Atmospheric forcing of the Eastern Mediterranean Transient by midlatitude cyclones

Joy Romanski1, Anastasia Romanou2, Michael Bauer2 and George Tselioudis2

1Center for Climate Systems Research, Columbia University, New York, NY, USA
2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
The Eastern Mediterranean Transient (EMT)

- Hydrological changes in Eastern Med enhanced density of Aegean – increased salinity due to reduced freshwater input and circulation changes – preconditioned for deep convection.

Datasets

• OAFlux latent and sensible heat fluxes
 – Merged satellite and reanalysis product, 1°, daily resolution

• ECMWF Interim Reanalysis (ERA Interim) 10m meridional winds and 2m air temperatures
 – ~ 0.7°, 6-hourly resolution

• NASA’s Modeling, Analysis, and Prediction (MAP) Climatology of Mid-latitude Storminess (MCMS) cyclone centers and tracks
 – Derived from 1.5°, 6-hourly resolution ERA Interim sea level pressure

Anomalous Turbulent Heat Fluxes from the Aegean during the EMT

NDJF 1991/1992

NDJF 1992/1993

Net flux highly correlated on synoptic time scales with wind, air temperature and air humidity

<table>
<thead>
<tr>
<th>Net Flux</th>
<th>Wind</th>
<th>Air Temp</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>-0.85</td>
<td>-0.79</td>
<td></td>
</tr>
</tbody>
</table>
Heat Advection over the Aegean by the Meridional Wind (vdT/dy)

In NH winter, dT/dy < 0

North wind: \(v < 0; \) \(v dT/dy > 0; \)

South wind: \(v > 0; \) \(v dT/dy < 0; \)

warm advection
Decomposition of vdT/dy

$$A = [\overline{A}] + [A'] + \overline{A}^* + A^{*'}$$

$[\] = \text{zonal mean}$

$^* = \text{deviation from zonal mean (eddy)}$

$_ = \text{temporal mean (stationary)}$

$' = \text{deviation from temporal mean (transient)}$

A comprises:

\overline{A}, the time mean zonal mean, e.g., latitudinal temp gradient

$[A']$, the time varying zonal mean, e.g., subseasonal variation of the latitudinal temp gradient

\overline{A}^*, the time mean spatial eddies, e.g., standing waves

$A^{*'}$, the time varying spatial eddies, e.g., storms
Decomposition of $\text{vdT/}dy$

$$A = [A] + [A'] + \overline{A}^* + A^{*'}$$

- Substitute v and dT/dy for A, multiply
- Select largest terms

storms

- $v^{*'}[dT/\text{dy}]$: Advection of mean temperature gradient by transient eddy meridional winds (storms)
- $v^{*'}dT/\text{dy}^*$: Advection of stationary eddy temperature gradient by transient eddy meridional winds
- $v^{*'}dT/\text{dy}^{*'}$: Advection of transient eddy temperature gradient by transient eddy meridional winds

stationary features

- $\bar{v}[dT/\text{dy}]$: Advection of mean temperature gradient by stationary eddy meridional winds
- $\bar{v}dT/\text{dy}^*$: Advection of stationary eddy temperature gradient by stationary eddy meridional winds
Aegean Sea Turbulent Fluxes and Heat Advection

- day-to-day flux variability controlled by advection of mean temperature field by storms, especially during 1991/1992 and 1992/1993 winters

Heat advection by storms strongly correlated with turbulent flux, especially during the enhanced EMT winters (0.9 vs. 0.7)

Interannual variability of $\frac{\partial T}{\partial y}$ controlled by stationary eddy winds (correlation = 0.97)
Cyclone Frequency Anomalies during EMT

- Dipole pattern in both years – fewer storms in central Mediterranean compared to eastern Mediterranean
- Produces reduced warm advection (fewer central Med storms) and enhanced cold advection (more eastern Med storms) over Aegean Sea
Storm-related anomalous heat advection

vdT/\,dy anomaly when there is a storm in the Central Mediterranean (defined as 10-15E, 38-40N and 15-20E, 30-40N), NDJF 1989/1990 – 2008/2009

- Fewer central Med storms lead to reduced warm advection over Aegean
- More eastern Med storms lead to enhanced cold advection over Aegean
- Both enhance turbulent heat loss from Aegean
Conclusions

• Atmospheric forcing during most intense portion of EMT was due to altered cyclone activity
• Reduced frequency of central Med storms led to fewer warm advection events
• Increased frequency of eastern Med storms led to more cold advection events

Further Questions

• Relationship with large scale oscillations?
 • No correlation between Aegean flux and NAO, in agreement with Josey, 2003
 • Relationship with NCP/EAWR pattern – correlation of 0.60 between monthly mean NCP and Aegean turbulent fluxes
• Will there be more frequent EMT-like cyclone patterns in the future?
 • Poleward storm track shift could lead to fewer central Med storms
 • Higher resolution climate models/nested modeling techniques may be able to help
Thank you!

For more information on the NASA Modeling, Analysis, and Prediction Program Climatology of Mid-latitude Storminess dataset, please contact George Tselioudis or Michael Bauer at NASA GISS.