Air permeametry on outcrop analogues: a composite image of the Neogene aquifer, Belgium.

B. Rogiers1,2, K. Beerten1, T. Smekens2, M. Huysmans2, M. Gedeon1, D. Mallants3, O. Batelaan2,4, A. Dassargues2,5

1 SCK•CEN – 2 KU Leuven – 3 CSIRO – 4 VUB – 5 ULg
Contents

- Introduction
- Methods
- Results
- Conclusions
Contents

- Introduction
 - Research context
 - Neogene aquifer
- Methods
- Results
- Conclusions
Research context

- Saturated hydraulic conductivity \((K_s) \)
 - one of the most important parameters
 - determining groundwater flow and contaminant transport
 - in both unsaturated and saturated porous media

- In-situ \(K_s \) measurements
 - remain very complex and scale-dependent
 - air permeameters have being used effectively in the field as an indirect method to determine \(K_s \)

- Case study: Neogene aquifer, Belgium
 - important groundwater resource
 - subject to hydrogeological assessments in the framework of potential future disposal of radioactive waste
Neogene aquifer - Location
Neogene aquifer - Geology

- Coarse to fine sands
- Distinct clayey zones
Neogene aquifer – Selected outcrops

- Availability
- Accessibility
Contents

- Introduction
- Methods
 - Air permeameter measurements
 - Validation in the lab
 - Numerical upscaling
- Results
- Conclusions
Air permeability measurements

- Tinyperm II
 air permeameter
 New England Research &
 Vindum Engineering 2011

- Equation from literature
 to convert k_a to K_s
 Iversen et al 2003
Validation in the lab

- Kopecky ring samples of different lithologies
- Constant head permeameter tests
Numerical upscaling

- Derive one single K tensor with flow conservation
- Approaches
 - Permeameter-type setup
 - Prescribed head at in- and outflow boundaries
 - No-flow at parallel boundaries
 - Combination of 4 boundary condition setups
 - Prescribed head everywhere
 - 4 flow directions

\[
- \begin{bmatrix}
 \nabla h_x & 0 & \ldots & 0 \\
 0 & \nabla h_z & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & \nabla h_x \\
\end{bmatrix}
\begin{bmatrix}
 K_{xx} \\
 K_{zz} \\
 K_{xz} \\
\end{bmatrix} =
\begin{bmatrix}
 \bar{q}_{x1} \\
 \bar{q}_{x2} \\
 \bar{q}_{x3} \\
\end{bmatrix}
\]

- e.g. Zhou et al 2010; Li et al 2011
Contents

- Introduction
- Methods
- Results
 - Air permeameter measurements
 - Validation in the lab
 - Numerical upscaling
- Conclusions
Air permeameter measurements

Quaternary

Pliocene

Miocene

Introduction Methods Results Conclusions
Air permeameter measurements

Quaternary

Pliocene

Miocene

Introduction | Methods | Results | Conclusions
Air permeameter measurements – 2 examples

Poederlee Sands

Diest Clayey Sands
Air permeameter measurements

<table>
<thead>
<tr>
<th>ID</th>
<th>Sediment</th>
<th>log(_{10}(K_s)) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>a</td>
<td>Kleine Nete point bar sands</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
<td>Kleine Nete channel fill</td>
<td>-9.2</td>
</tr>
<tr>
<td>b</td>
<td>Campine clay-sand complex profile</td>
<td>-8.1</td>
</tr>
<tr>
<td>c</td>
<td>Ice wedge & cryoturbation structures</td>
<td>-7.8</td>
</tr>
<tr>
<td>d</td>
<td>Lommel Sands</td>
<td>-6.4</td>
</tr>
<tr>
<td>e</td>
<td>Mol Sands</td>
<td>-4.0</td>
</tr>
<tr>
<td>f</td>
<td>Top Poederlee Formation</td>
<td>-6.5</td>
</tr>
<tr>
<td>g</td>
<td>Bottom Poederlee Formation 1</td>
<td>-7.8</td>
</tr>
<tr>
<td>h</td>
<td>Bottom Poederlee Formation 2</td>
<td>-5.4</td>
</tr>
<tr>
<td>i</td>
<td>Hukkelberg stratigraphical boundary</td>
<td>-8.2</td>
</tr>
<tr>
<td>j</td>
<td>Kasterlee Sands</td>
<td>-6.7</td>
</tr>
<tr>
<td>k</td>
<td>Kasterlee Clay</td>
<td>-6.6</td>
</tr>
<tr>
<td>l</td>
<td>Clayey top Diest Formation</td>
<td>-6.1</td>
</tr>
<tr>
<td>m</td>
<td>Diest Sands</td>
<td>-5.0</td>
</tr>
<tr>
<td>n</td>
<td>Bolderberg Sands 1</td>
<td>-4.2</td>
</tr>
<tr>
<td>o</td>
<td>Bolderberg Sands 2</td>
<td>-4.3</td>
</tr>
</tbody>
</table>
Validation in the lab

R² = 0.92

Line of perfect agreement
Numerical upscaling – 2 examples

Poederlee Sands

Diest Clayey Sands
Numerical upscaling

<table>
<thead>
<tr>
<th>ID</th>
<th>Sediment</th>
<th>Permeameter setup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log${10}(K{xx})$</td>
</tr>
<tr>
<td>c</td>
<td>Ice wedge & cryoturbation structures</td>
<td>-4.15</td>
</tr>
<tr>
<td>d</td>
<td>Lommel Sands</td>
<td>-4.19</td>
</tr>
<tr>
<td>e</td>
<td>Mol Sands</td>
<td>-3.64</td>
</tr>
<tr>
<td>f</td>
<td>Top Poederlee Formation</td>
<td>-3.88</td>
</tr>
<tr>
<td>g</td>
<td>Bottom Poederlee Formation 1</td>
<td>-4.80</td>
</tr>
<tr>
<td>h</td>
<td>Bottom Poederlee Formation 2</td>
<td>-3.84</td>
</tr>
<tr>
<td>j</td>
<td>Kasterlee Sands</td>
<td>-3.86</td>
</tr>
<tr>
<td>k</td>
<td>Kasterlee Clay</td>
<td>-4.13</td>
</tr>
<tr>
<td>l</td>
<td>Clayey top Diest Formation</td>
<td>-3.56</td>
</tr>
<tr>
<td>m</td>
<td>Diest Sands</td>
<td>-4.06</td>
</tr>
<tr>
<td>n</td>
<td>Bolderberg Sands 1</td>
<td>-3.81</td>
</tr>
<tr>
<td>o</td>
<td>Bolderberg Sands 2</td>
<td>-3.86</td>
</tr>
</tbody>
</table>
Contents

- Introduction
- Methods
- Results
- Conclusions
Conclusions

- A handheld air permeameter is an efficient tool to characterise hydraulic conductivity
- It offers access to spatial variability on scales that are not feasible by classical core-based techniques
- Validation shows that the K_s estimates are within one order of magnitude from the laboratory analyses results
- Complex stratigraphical settings can be effectively characterised if outcrops of the different components are available
Acknowledgements

- The authors thank Katrijn Vandersteen and Koen Vos for their assistance during the field work.
- Sibelco and Terca Nova are acknowledged for the permission to access their quarries. Via Kempen is acknowledged for the permission to access the Kempense Noord-Zuidverbinding road construction yard.
Centimeter-scale secondary information on hydraulic conductivity using a hand-held air permeameter on borehole cores

Introduction

- Saturated hydraulic conductivity (K_z)
- One of the most important parameters
- Determining groundwater flow and contaminant transport
- Both natural and constructed porous media
- Sensitivity analysis of K_z is key to obtaining effective transport parameters and explaining K_z measurements or inverse estimates at the larger scale
- Use of borehole cores is common at McDonald's, Belgium (Fig. 1); EarthJet, Belgium (Fig. 1); and EarthJet, Belgium (Fig. 1)
- Sensitivity of K_z to lithological or mineralogical variations
- Two approaches: 1) measure K_z from constant-head permeameter tests in the lab
- K_z vs. K_v for different sand samples
- T-Nielsen sand sample with distinct clay layers, with varying geological context

Methods

- Measurements
 - Use of the TinyFern II hand-held air permeameter device (Fig. 2a)
 - New measurement on the dry borehole core samples at 1 cm resolution, performed within 1 hour (Fig. 2b)
 - Equation of Liu et al. (2019) to convert air permeability to a K_z estimate, since perfect non-destructive measurement of hydraulic conductivity in real-world scenarios cannot be expected
 - Additional measurements to quantify measurement error and operator influence (Fig. 4)
- Calibration with the lab K_z measurements with a linearized-effects model, with random effects for both the randomly-numbered factors
- Statistical analysis
 - Comparing the lab measurements and air permeameter estimates after standardization
 - Fitting an intrinsic model of compression
- Results
 - The relative differences between the geophysical data correspond to the lab analysis observations
 - A systematic bias and smaller range of K_z values is predicted using the equation from Liu et al. (2019)
 - Measurement error as well as the systematic bias introduced by the operator are small compared to the intrinsic K_z variability (compare Figs. 3a and 3b)
 - The difference between lab measurements and air permeameter estimates is 0.74 and increases after calibration to 2.3 (see Fig. 2)
 - After standardization of the data, an initial model of compression was fitted to the experimental variances with two nested variance models (Fig. 6): One for a short range (2.4 m) and one for the larger range (12 m)
- Predictions are presented in Fig. 7, and show a clear shift in scale, as well as clear zones of lower K_z values in the areas for which core samples were missing, important uncertainty remains, as indicated by the large confidence intervals
- Cross-validation results (Fig. 8)
 - Performance metrics: ME = 1.75; ME = 0.91; ME = 0.31
 - Performance coefficients: ME = 0.98; ME = 0.97; ME = 0.97
 - Especially the low K_z range predictions are improved

Conclusions

- Hand-held air permeameter measurements on uncleaned borehole cores provide a very cost-effective way to obtain high-resolution K_z data
- Even core data that have been lying open to air and have been subject of several investigations during a few years, provide useful information
- Without calibration, relative analysis K_z estimates can be obtained, and equations from literature provide absolute K_z estimates (e.g., Liu et al. 1995)
- Calibration with laboratory measurements improves the accuracy, and is recommended for core data and measurements of this scale

Acknowledgements

- The authors acknowledge the KIVI-NAP project for providing borehole cores and laboratory data
- The authors are grateful to OCM/GER/NSA for providing borehole cores and laboratory data
- The authors are grateful to the reviewers for their valuable comments and suggestions
- The authors are grateful to the funding agencies for their support

References

Copyright © 2012 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL
Operational Office: Boeretang 200 – BE-2400 MOL

Thank you for your attention!

Questions?

brogiers@sckcen.be
References