Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol' sensitivity analysis of a hydrological model

(EGU2012-237)

J. Nossent and W. Bauwens

Department of Hydrology and Hydraulic Engineering
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
(Phone: +32-2-649 88 77; e-mail: jnossent@vub.ac.be)

A. Introduction
- Sensitivity analysis (SA)
 - Main practice in hydrological modelling
 - Identify influential and non-influential parameters
 - Insights on the model processes
- Sobol’ SA method [1]
 - Variance based method
 - For time series -> objective function is required -> scalar
 - Variance estimation assessed with Monte Carlo integrals
 - Accuracy of variance estimation may decrease when mean value of scalar inputs μ for SA is large [2]
- Nash-Sutcliffe efficiency (NSE) [2] yields more accurate results than e.g., the also commonly used Sum of Squared Residuals
- Sufficient for flow predictions (mean NSE is 0.73)
- Poor for water quality simulations (mean NSE up to ~46)

B. Sobol’ sensitivity analysis
- Very robust SA technique with almost ideal properties
- No assumptions about linearity, additivity, monotonicity
- Quantifies amount of variance that each parameter contributes to unconditional variance of model output
- Expressed with sensitivity indices:
 - First order index (main effect): $S_i = V_i / V$
 - Measure for variance contribution of individual parameter i to total variance
 - Total index: $S_t = S_i + S_{i,j} + S_{i,j,k} + \ldots$
 - Sum of rank of effect of i and all interactions with other parameters
- $f_i, V_i, V_{i,j}, \ldots$ numerically estimated with Monte Carlo integrals
- $E_i = V_i / (1 + 2V_i f_0)$ numerically
- A large number of random samples in the parameter hyperspace are required to evaluate model
- A sample size of 12000 is used, resulting in 33600 flow (p=26) model evaluations (with p=26, the number of parameters) for S_i and S_t

C. SWAT-model of the River Kleine Nete catchment [4]
- SWAT (The Soil and Water Assessment Tool) [5]:
 - Small (580 km2), lowland (av. 23 msl) catchment
 - 56% agriculture, 26% forests
 - Mainly sandy soils (95%)
- Physical basis, semi-distributed (HRUs), basin scale simulator for water quantity, water quality and sediment simulations
- The River Kleine Nete catchment
 - The model
 - 1997-2007
 - Precipitation: 700 to 1100mm/y
 - PET: 700mm/y, ET: 500mm/y
 - 5°C in winter & 14°C in summer
 - Short river reaches
 - 26 parameters

D. The normalized Nash-Sutcliffe efficiency
- The regular Nash-Sutcliffe efficiency:
 \[NSE = 1 - \frac{\sum (\hat{y}_i - y_i)^2}{\sum (y_i - \bar{y})^2} \]
- with y the simulated value on day i, \bar{y} the observed value on day i and \bar{y} the average of the observations
- The normalized Nash-Sutcliffe efficiency:
 \[NSE = 1 - \frac{\sum (\hat{y}_i - y_i)^2}{\sum (y_i - \bar{y})^2} \]

E. Results
- Mean objective function values (\hat{y}) for the NSE and NNSE for different variables
- Improved and more realistic sensitivity indices (S_i and S_t) for NNSE for water quality variables
- Graphical representation of the evolution with increasing sample size of the total sensitivity index (S_t) for o-Po$_4$ with applying the regular NSE and the normalized NSE as an objective function

F. Conclusions
- A normalized Nash-Sutcliffe efficiency (NNSE) has been introduced with similar properties as the regular Nash-Sutcliffe efficiency (NSE) to evaluate model output, but with values between 0 and 1
- The NNSE values between 0 and 1 provide a more intuitive interpretation of the model evaluations
- The NNSE can be successfully applied for the Sobol’ sensitivity analysis of flow and water quality variables

References