Contribution of ferric iron to light absorption by chromophoric dissolved matter

Yi-Hua Xiao, Timo Sara-Aho, Helinä Hartikainen, Anssi V. Vähätalo
Department of Environmental Sciences, University of Helsinki, Finland (yihua.xiao@helsinki.fi); Finnish Environment Institute, Finland; *Department of Food and Environmental Sciences, University of Helsinki, Finland; †Aronia Research and Development Institute, Novia University of Applied Sciences and Åbo Akademi University, Finland

Introduction
In surface water at pH > 5.5, most dissolved ferric iron (Fe(III)) is associated with humic substances (HS) and forms Fe-HS. Both Fe and HS absorb light, and thus contribute to the chromophoric dissolved organic matter (CDOM). When CDOM is measured from waters with Fe-HS, it is known how much of the absorbance arises from Fe or HS.

In this work, we estimated the contribution of Fe(III) to light absorption by CDOM with Fe-HS in laboratory. We determined molar absorptivity of Fe associated with HS (\(\alpha_{Fe-HS} \)) and applied it to surface waters across large geographic scales.

Materials & Methods
- Humic substance standards (HS): Swannie River Humic and Fulvic Acids (SRHA, SRFA) from USA; Pony Lake Fulvic Acid (PLFA) from Antarctica
- Natural water samples: lentic waters (a spring, a lake and a coastal site from Finland) and ten major rivers from five continents
- Fe-HS association: mix acidic Fe(III) sulfate solution with HS standards (10 mg L\(^{-1} \) Fe-HS association: mix acidic Fe(III) sulfate solution with HS standards (10 mg L\(^{-1} \))) and raising the pH to 8 with NaOH. Maximum Fe-binding capacity of HS was obtained by increasing Fe concentration.
- Molar absorptivity (\(\alpha \)) was calculated by dividing the increase in light absorption of Fe-HS by the concentration of associated Fe.
- Two-step of filtration (GF/F and 0.2-µm filter (<0.2 µm), and after cation exchange chromatography (IEC).
- Fe was analyzed with ICP-MS/OES; DOC was measured with a total organic carbon analyzer.

Results
Effects of Fe on light absorption of HS solutions
- The association with HS maintained a high concentration of Fe in solution and consequently increased the light absorption (Fig. 1).
- Light absorption by Fe-HS increased linearly as a function of the increasing concentration of associated Fe in the solutions after IEC (Fig. 2).
- The maximum Fe-binding capacities calculated per mg of C for SRHA, SRFA and PLFA in Milli-Q water (at pH8) were 13.0, 13.5, and 7.6 µmol Fe [mg C]\(^{-1} \), respectively.

Estimation of light absorption of dissolved Fe in natural waters
- The molar absorptivity (\(\alpha \)) and Fe-specific absorption coefficient (\(\alpha_{Fe} \)) were spectrally similar among three HS standards (Fig. 3).
- Calculated contribution of Fe to the absorption by dissolved matter increased with wavelength (Fig. 4).
- In natural surface waters examined, Fe contributed from 0.6% to 58% to light absorption by total dissolved matter at \(\lambda = 410 \) nm (Fig. 4).

Conclusions
- The association of Fe with HS increases the absorption coefficient of CDOM.
- Terrestrial-derived CDOM (SRHA/FA) has a higher Fe-binding capacity than microbial-derived CDOM (PLFA).
- Molar absorptivity of associated Fe are similar among HS.
- Fe can account for a significant part of the light absorption by CDOM.

We propose the term chromophoric dissolved matter (CDM) for cases where inorganic absorption cannot be separated from the absorption by organic chromophores.

Acknowledgement
This work was funded by Kone Foundation. Hanna Aamos and Eeva Nikkola are thanked for the CDOM light absorption and DOC analysis. Major river samplers from ten countries are thanked for water sampling.