Control of river stage on the reactive chemistry of the hyporheic zone

P Byrne¹, A Binley¹, AL Heathwaite¹, CM Heppell², K Lansdown², H Zhang¹, M Trimmer² and P Keenan¹

¹Lancaster University ²Queen Mary, University of London

The Lancaster Environment Centre

Implications of groundwater-surface water connectivity for nitrogen transformations in the hyporheic zone (NERC grant: NE/F006063/1)

How does river stage fluctuation affect connectivity and reactive chemistry in the HZ?

Experimental site: R. Leith, Cumbria, UK

- In-stream piezometer (mid channel)
- In-stream piezometer (channel margin)
- Riparian piezometer
 - Channel geomorphology = a pool
- Channel geomorphology = a riffle
- 111m ASL
- 110m ASL

Figure 1. River Leith study reach showing riverbed elevation and the location of experimental sample sites.

Field Data

- Vertical flux (K * dh/dl)
 - Channel piezometers screened at 20, 50 and 100cm

- Pore water chemistry (NO₃⁻, SO₄²⁻, Cl⁻, NH₄⁺, DOC, Mn)
 - 100 cm piezometer equipped with multi-level pore water sampler (10, 20, 50, 100 cm)
- River stage and subsurface head

 Continuous recording with data loggers at 100cm

E

CJ

100 cm

VHG and vertical flux

Figure 3. Summary of riverbed vertical flux measurements (mean [n = 4] and standard deviation) at site A and site B at low stage (LS) and high stage (HS).

Surface and pore water Cl⁻ and NO₃⁻ concentrations

Figure 4. Summary of (a) chloride and (b) nitrate (mean [n = 4] and standard deviation) surface and pore water concentrations at site A and site B at low stage (LS) and high stage (HS). SW = surface water sample. The horizontal dashed line indicates the proposed vertical extent of groundwater-surface water mixing.

Surface and pore water Mn and DOC concentrations

Figure 5. Summary of (a) manganese and (b) DOC (mean [n = 4] and standard deviation) surface and pore water concentrations at site A and site B at low stage (LS) and high stage (HS). The horizontal dashed line indicates the proposed vertical extent of groundwater-surface water mixing. SW = surface water sample. BDL = below instrument detection limits.

Principal components analysis of R. Leith biogeochemistry

Table 1. Principal component loadings and explained variance for the PCA. Correlations reported are the correlations between the principal components and the individual variables in the original dataset.

	PC1 loadings	r	PC2 loadings	r
DOC	0.488	0.652**	-0.831	-0.702**
Nitrate-N	-0.793	-0.624**	0.311	0.480**
Ammonium-N	-0.594	0.168	0.033	0.150
Chloride	-0.481	0.045	-0.178	-0.166
Sulphate-S	-0.621	-0.413**	0.091	0.094
Manganese	0.934	0.841**	0.356	-0.079
% variance	59.9		20.2	
explained				
% cumulative	59.9		80.1	
variance				

** significant at 0.01 level.

PCA biplots

Figure 6. Principal component analysis biplots showing the distribution of surface and pore water biogeochemical samples along the first two ordination axes. Samples are grouped according to (a) stage level, (b) sample location and (c) sample depth. Arrows on the ordination axes indicate the direction of decreasing principal component scores.

What about much higher stage increases?

Conclusions

- River stage fluctuations significantly affect biogeochemical patterns in the hyporheic zone
- Delivery of DOC to hyporheic sediments during high river stage may fuel biological reduction processes
- Future studies may aim to quantify:
 - the extent to which the supply of DOC to hyporheic sediments varies throughout the year
 - potential for NO₃-N removal under low and high stage conditions
 - catchment-scale studies