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though Busuioc et al. (2001) suggest that for climate change applications the
H reproduce the low frequency variability.
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H %nd SD methods in combination offers an improvement in terms of bias
e selected DD improves the representation of non-stationarity features

on the considered variable and associated typical heterogeneity scale,
in improving the spatial heterogeneity of trends, while best results are
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Fig.2 Methodological framework.
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Indicator of performance: The 5th, 25th 50th 75th gnd 95t
percentile of the M cumulative spatial frequency distribution
over the 10?2 km? grid S| nodes (figure 3). Same elaboration
performed after splitting residues into four seasonal sub dataset:
winter (Dec, Jan, Feb), spring (Mar, Apr, May), summer (Jun, Jul,
Ago) and autumn (Sep, Oct, Nov).

How to read the results: The closer the mean bias to zero, the
higher the ability of the method to reproduce the spatial mean
of each variable; The narrower the distribution, the higher the
ability of the elaboration to reproduce the spatial variability of
each variable.
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gical simulation at local and/or basin scale.

ren GCM and land data, that is the mean error.

is defined for each variable, at each S/ node n, for each elaboration e, as : M;= SI®
_elaboration e the S/ node n (the overbar stands for the mean over time, at monthly scale).

- 2- Improving the GCM ability in reproducing the observed climate and its non stationarity.

- then revealed by the Qnsy -Q, s quantiles-quantiles residues means time variation : mensy

3- ImprowngjheﬁLMjmntwniepmdumngjheghserved trends and their spatial heterogeneity.

terogeneity: Var® = E[(SS¢ — E[SSE 1)?] (3)

o quantify the ability of each downscaling method and their combination in reproducing the land observec

— SI;;ef(l) where SIS stands for the monthly time series resulting from the S/ of

The local climate is represented by the SI¢ quantiles computed at each season s, at each node n, using a 21 year sliding time window centered on the year |, and refer year I, and referred as Q5 5 -
The Q, - The Qr,y are then then compared wmhgu_a_nnles of the same node computed over the whole perlod Qs using the same plotting position. The non '

Yk 08y () - Qs (20

The annual Sen’s slope (Gilbert, 1987) and associated significativity (through the associated Man Kendall coefﬁuents) over the whole study period are computed at each node of the
id on the annual variables and referred as SS5. The SS; speﬁe#drs’fﬁbtmefha%eeelﬂreiabeﬁﬂeﬂ and associated variance are computed as an indicator of th .

stationarity in the climate means is

1-MEAN BIAS

(d) Resulgg EEE E E SSio s

2-QUANTILES N N ITY
Indicator of performancef rrc:} -t’#e qguantiles mean
bias Qmb;, n,s,y compute et an ﬂyiari window quantiles
and the whole period %ﬁa t ef

rence and each
elaboration (figure 4).
(J 'ﬂthe’ absflute value of each Qmbg,,

How to read the resu
indicates, for each eIa w the mean value of the

|
quantiles arising from the consider 21 years window differs from

the associated mean value of the full period quantiles. A Ii’n%ar’
signal stands for a monotonic trend.

(ref) = (1) —(2) —- (3) — (4) | |
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Fig.3 Monthly and seasonal spatial distribution of mean bias

GCM (1): large mean bias in seasonal precipitation, overestimates
and underestimates in minimum and maximum temperature,
respectively (2°C).
spatial heterogeneity.
DD (2): reduction of the mean bias, keeping almost unchanged the
spatial heterogeneity.
reduction of the annual and seasonal mean bias and .
associated spatial heterogeneity by an order of magnitude. .
DD-SD (4) : further and statistically significant improvement,.
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Fig.4 Annual and seasonal non stationarity in the quantilf ’
distribution means.

The GCM (1) reproduces correctly the non statmnantJ &
the annual and seasonal quantiles, but
underestimates trends.

e The DD (2) modulates the non stationarity of the GCM

These GCM bias are associated with large

the GCM, mprovm? #orlrel?tllo with reference. ’ ’ ’
The SD (3) does not modulate the GCM non statlonarityL L ’
|
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