

. Abstract

Leaching of nitrate (NO_{3⁻}) from irrigated agricultural land and water contamination have become a worldwide concern. Amount and time of water and nitrogen fertilizer application are thus should be investigated to understand its movement to groundwater and surface water. This study was conducted to investigate the amount of NO₃⁻ leached to groundwater and surface water from irrigated cotton, winter wheat and maize fields in the Fergana Valley, Uzbekistan.

II. Study Area

Figure 1: Scheme of plots location and measurement points in Azizbek site (40°28'N; 71°32'E), Fergana province, Uzbekistan. 2 fields: contour 13 (10.2 ha) and contour 15 (8.9 ha) were investigated and contours #14 (10 ha), #16 (7.4 ha) were monitored for agronomic practices.

LEGEND

Collectors (Coll) and open drainages (OD)
 — Closed drainages (CHD)
—▼ Irrigation canal (concrete-flume) —— Irrigation canal (earthened)

 Border of irrigated area (contour) Groundwater level (GWL) monitoring wells (regular) 5 GWL and water sampling wells (regular) Soil moisture monitoring device (CAWa Project) igation measurement flume and water samplling op arrow indicate furrow irrigation direction) HD water sampling and dischare meast. (regular) Coll and OD w ater sampling point (regular) Number of irrigated contours Study area

Table 1: Design parameters of subsurface horizontal drainages

Name of closed horizontal drains	Service area (ha)	Drainage spacing (m)	Length (m)	Drainage depth (m)	Diameter of pipe (mm)	Slope	Designed drainage module, (I s ⁻¹ ha)	Construction year	Pipe type
CHD-1	40	250	1668	3.3	147	0.0025	0.17	1959	asbestos- cement
CHD-2	20	250	750	3.2	147	0.0025	0.17	1962	asbestos- cement

Assessment of Nitrate-N Load in Subsurface Drainage Water from the **Agricultural Fields in the Fergana Valley, Uzbekistan**

Sh.M. Kenjabaev^{1,2}, I. Forkutsa², V.A. Dukhovny¹, H.G. Frede²

¹ Scientific Information Centre of Interstate Coordination Water Commission, Tashkent, Uzbekistan; ²Institute of Landscape Ecology and Resources Management, Justus-Liebig-University, Giessen, Germany

III. Methodology

- Agronomical monitoring and phenological observation Irrigation, fertilization etc. - field visits, visual observation, farmers questionnaire
- Water and soil sampling and analysis
- Irrigation water (Q) & CHD water (q) GWL & sampl.

pH, T °C and EC NO₂

- SP Specord 50, Analytik, Jena, GER)

Soil moisture Soil texture, chem. & hydraul.

IV. Results and Discussion

During 2009-2011 monitoring years, cotton yield was highest (6.4 t ha⁻¹) in 2010 (C-15) when application rate of synthetic fertilizer was optimal according to recommendation level (tab.2).

Table 2: Cropping calendar, fertilization rates (nutrient form) and harvested yield of agricultural crops in the study area

	Contour 13	8&14 (2	0.2 ha)				Contour 15	5&16 (10	6.3 ha)			
Year	Crop type	Area	Planting-harvest date [*]	Fertilization (kg ha ⁻¹)		Yield ^{**}	Crop type	Area (ha)	Planting-harvest date [*]	Fertilization (kg ha ⁻¹)		Yield ^{**}
			-	Ν	P_2O_5	(t ha ⁻)			_	Ν	P_2O_5	(t ha ⁺)
2009/2010	Wheat	20.2	14.10.2009 - 21.06.2010	170	38	3.1	Fallow	16.3	15.10.2009 - 17.04.2010			
2010	Maize	8	26.07.2010 - 17.10.2010	51	-	6.4	Cotton	16.3	19.04.2010 - 30.09.2010	238	38	3.4
2010/2011	Fallow	20.2	18.10.2010 - 14.04.2011				Wheat	16.3	15.10.2010 - 21.06.2011	163	19	4.9
2011	Cotton	20.2	15.04.2011 - 28.09.2011	204	19	2.8	Maize	13.9	29.06.2011 - 15.10.2011	51	-	8.0
* harvest date	for cotton w	vas take	n as first harvest in the se	econd h	alf of Sept	ember (a	bout 74 % (of total	harvested vield), however	r the lag	st harvest	was done

during first decade of October; ** yield for maize is given as a dry biomass (sown for silage after harvest of winter wheat)

Cotton sown in 2011 was not irrigated enough to meet crop water demand thus water balance for aeration zone was negative (tab. 3). Groundwater contributes about 19 % of cotton water demand. Table 2: Components of agration zone water balance (C 12)

	•	GWL^1	Water balance (m ³ ha ⁻¹)								
Year	ar Crop (P ² Ir ¹ (1-a)Fc		(1-a)Fc ³	Cg ⁴ Si ¹		ETc ⁵	DP^6	ΔWa	(%)
09/10	Wheat	1.1-2.7	2152	4833	725	na	231	4349	1162	1968	na
2010	Maize	1.8-2.3	292	1871	281	na	68	2590	486	-700	na
2011	Cotton	1.3-2.4	330	4080	612	1358	302	7268	868	-2058	19
		- toursta		·			-			the station of the state	

* Nitrogen balance (kg ha⁻¹) for cotton sown in 2011 showing surplus (tab. 4). The gaseous N₂ losses

can significantly reduce this value (N₂ loss range within 10-70 % of applied N, Scheer et al, 2008).

Year	Crop	Inputs					outs	Surplus	¹ measured in situ (net irrigation N);
		Δ soil NO ₃ -N ¹	lr ¹	Fertilizer	Ground water ²	Dr^1	Uptake ³		³ according to SoyuzNIKHI: 1 t row cotton under yield of
2011	Cotton	-18	9	204	5	9	131	61	2.5-3.0 t ha ⁻¹ contains about 46 kg N (Mamarasulov U., 198

V. Conclusions

• There is high competition on water resource use both, among farmers and within local harvesters (especially during 1st irrigation of cotton and secondary crops after wheat harvest); • The field measurements confirm that Model Upflow can predict upward water movement to the root zone in the correct order of magnitude; • Continuous upward water movement and further evapotranspiration may result secondary soil salinization (groundwater mineralization - TDS: 2.5-3.3 g l⁻¹); • Caution should be taken to account capillary rise in water balance and recommending to reduce surface irrigation; • The subsurface drainage enables to control waterlogging and soil salinity. While excess water application washes nutrients as well (especially nitrate form of nitrogen); • Results of water and N balance for cotton in 2011 reveals that irrigation amount (includeing charging irrigation) is not enough to meet crop water demand and drainage N loss is not significant; • Proper irrigation water management with combination of fertilizer application reduces unproductive losses under irrigation and drainage interactions; • Awareness and understanding of local people, farmers and decision makers on this processes could help to improve agricultural productivity and effective use of scarce water resources.

VI. References and Acknowledgements

. Allen G., et al, 1998. Crop evapotranspiration. (FAO irrigation and drainage paper 56), FAO, Rome, Italy, P 326. 2. Abirov A., et al, 2011. Recommendation on an optimal combination of elements of furrow irrigation methods for various condition in Fergana Valley. Project "WPI-PL", P 38 (Russian)

3. Dukhovny V., et al, 2005. Relationship between irrigation and drainage. SIC ICWC book (http://www.cawater-info.net/library/books.htm)

5. Raes D., et al. 2003. Model to assess water movement from a shallow water table to the root zone. J. Agr. Wat. Man., 62, 79-91.

- trapezoidal weir (WCH-50, Q \sim 0.005-0.082 m³ s⁻¹) - sounding device with measuring tapes and manual peristaltic pump (Eijkelkamp, the NLD)

- snap-shoot (pH/Cond 340i, WTW, Weilheim, GER) - photometric method (SANIIRI, KFK and UzNIGMI,

- hourly msrt. (Decagon ECH₂O EC-5, Pullman, WA, USA) pit excavation and auger (Eijkelkamp, the NLD)

***** Water balance

Aeration zone (Dukhovny V. et al, 2005) $\Delta W_a = P + Ir + (1-a)Fc - Si - ET \pm q$ where: Δ Wa: change in water stock in aeration zone within the boundaries of balance site over the estimated period; P: precipitation; Ir: irrigation; a: coefficient expressing a share of seepage that recharges groundwater; Fc: seepage losses from canals, Si: surface runoff (from irrigation); ET: evapotranspiration; ±q: vertical water exchange, "+" capillary rise (Cg), "-" deep percolation (DP) (fig.2). **Nitrogen balance** (Portela S. et al, 2009) Δ Soil + Fert. + Ir + GW - Dr - CropN = Difference where: Δ Soil: difference in soil N (up to 1 m) between sowing and harvest; Fert: fertilizer N; Ir: Irrigation water N; GW: groundwater N, by capillary rise (Cg); Dr: Drainage N run-off; CropN: crop N uptake.

available; ¹measured in situ; ²meteostation "Fergana" (No 4047180), UzHydromet; ³Canal seepage loss was taken as 15 % of gross water intake according to accepted value by BAIS and WUAs in Fergana province (SIC ICWC, 2011); ⁴Calculated by Upflow (Raes D., 2009a); ⁵Calculated by ETo (by ETo calculator, Raes D., 2009b) multiplied by Kc values (FAO method, Allen G. et al., 1998); ⁶according to efficiency of furrow irrigation method (Abirov A. et.al, 2011).

Soil moisture and GWL between two irrigations of cotton (C-13) has a same trend and negatively correlated (R²=0.86, fig.3). The range of NO₃ concentration in surface waters is lower than soil waters (fig.4) and relatively stable in subsurface drainage water (<14 mg 1-1) during no or less irrigation and fertilization but increased sharply (>30 mg I⁻¹) afterwards (fig.5). a) C-13 (GW)

- 4. Yang J. et al, 2007. Water fluxes at a fluctuating water table and groundwater contributions to wheat water use in the lower Yellow River flood plain, China. J. Hyd. Pro. 21, 717-724.

JUSTUS-LIEBIG-

The authors would like to acknowledge the Center for International Development and Environmental Research (ZEU) for bilateral cooperation and management This research was funded by the Volkswagen Stiftung under framework of the Project "Land Use, Ecosystem Services and Human Welfare in Central Asia"

