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Introduction
In order to improve the modelling of the propagation of GNSS electromagnetic signals through the neutral atmosphere and achieve millimetric accuracy at low
elevation, the GRGS (Groupe de Recherche de Géodésie Spatiale) in collaboration with CLS (Collecte Localisation Satellite) has developed a new set of mapping
functions called AMF (Adaptive Mapping Functions) for applications in geodesy (GNSS and DORIS orbits determination and stations positioning), altimetry or
radar InSar. The idea is to use high resolution observational data assimilations produced by the ECMWF (European Center for Medium-range Weather Forecast)
to model tropospheric delays from ray tracing for all elevations and azimuths. AMF are used to fit tropospheric ray-traced delays using a few numbers of coefficients
for a given site at a given time.
The refractivity of the moist air is the key physical parameter which drive the propagation of GNSS signals through the troposphere. To rebuilt the geometry
of refractivity field from ECMWF model-levels data, it is necessary to choose a model of gravity acceleration. In this poster, after a description of ECMWF
model-levels data and an explanation about how to determine the geometry of the refractivity field from these data, we will study several usual models and their
impact on the tropospheric delay.
The ray tracing algorithm consists of integrating the eikonal differential system using refractivity interpolated from the discretization by model levels. To do this
integration in a simpler form, we can divide the atmosphere in layers and make 2D ray tracing using Snell’s law at each levels. We will compare several models to
approximate reference and Earth’s surfaces and see how tropospheric delays change.

Ecmwf model-levels data
The current ECMWF model divides the atmosphere into 91 layers which are
defined in terms of pressure instead of altitude. Theses layers are defined on
half levels by :

pk+1(φ, λ, t) = Ak+1/2 +Bk+1/2 ps(φ, λ, t)

where ps(φ, λ, t) is the surface pressure field
(changing in time) and Ak+1/2 and Bk+1/2
are a set of fixed constant coefficients whose
values effectively define the vertical hybrid

coordinates. The horizontal discretization is
defined by a spherical harmonics truncation
which can be interpolated at a regular grid of
geodetic latitude φ and geodetic longitude λ.

ECMWF data contains for one epoch :
– the pressure ps at the orography surface
– the geopotential Φs at the orography surface
– the temperature Tk for each level
– the specific humidity qk for each level

Vertical hybrid coordinates

The vertical resolution is higher

in the troposphere and lower in

the stratosphere. Levels follow

the contours of the orography in

the lower atmosphere and they

are isobars above the level 30 be-

cause of the impact of orographic

features on the atmospheric cir-

culation decreases with altitude.

Ecmwf model-levels geometry
Equations of motion which are solved by the weather forecast model,
have a simpler form in terms of geopotential than geodetic height : using
geopotential eliminates centrifugal force and air density in the equations
and makes analytical calculations more convenient. The influence of

gravitional attraction inside the ECMWF model derives from

the geopotential.

Hybrid coordinates are defined from the time variable surface pressure on
the orography. The discrete formulation of hydrostatic equation for the
moist air relies geopotential and pressure at each level. So no assumption

is made on the geometry of the atmosphere in the ECMWF model
except to define the orographic geopotential.

The orography is derived by averaging and filtering the GTOPO30 terrain
elevation data set. GTOPO30 elevations are referenced vertically to the
EGM96 geoid of WGS84. As ECMWF model approximates gravity by a
mean gravity to define orography, Φs(φ, λ, t) is defined as orographic or-
thometric height multiplied by the constant standard gravity g0 = 9.80665
m.s−2. Therefore, we can conclude that orography is realistic and pro-

perly defines with respect to the WGS84.

How to determine the geometry of refractivity field
Geopotential and pressure at each level are rebuilt from the model-levels data
and the hydrostatic equilibrium using a method detailed in the IFS documen-
tation, part 3. The total refractivity of moist air for all levels is expressed
in terms of the total pressure pk and the pressure of water vapor pvk :

Nk(φ, λ, t) = k1
pk(φ, λ, t)

T v
k (φ, λ, t)

+ k′2
pvk(φ, λ, t)

Tk(φ, λ, t)
+ k3

pvk(φ, λ, t)

Tk(φ, λ, t)
2

where k1, k
′
2 and k3 are empirical coefficients (Rüger, 2002) and T v

k denotes
the virtual temperature. Using this formula, we have the refractivity for all
levels.

GNSS ray tracing applications use geodetic coordinates : we have to transform
geopotential at ECMWF levels Φk into geodetic height hk (height above the
WGS84 ellipsoid). To make the conversion between geopotential

and geodetic height, it is necessary to choose a model of gravity

acceleration. For the following explanation, we consider the normal gravity
as defined in the WGS84. The geopotential is defined by :

Φ(φ, λ, h) =

∫ h

0
γ(φ, λ, z)dz

where γ(φ, λ, z) is the normal gravity which is given on the ellipsoid surface
by the Somigliana formula :

γs(φ) = γe
1 + k sin2(φ)

√

1− e2 sin2(φ)
where k =

bγp
aγe

− 1

where γe and γp are respectively theoretical normal gravity at equator and
poles, a and b are the semi-major and minor axes of the WGS84 ellipsoid.

We can realize γ above the ellipsoid by γh at any level using a truncated Taylor
series expansion on height :

γh(φ, λ, z) = γs(φ)

[

1−
2z

a

(

1 + f +m− 2f sin2(φ)
)

+
3z2

a2

]

where m =
ω2a2b2

GM

and f is the WGS84 ellipsoid flattening.

As the geopotential is the integral of γ, the normal height Hk(φ, λ) of the
geopotential Φk(φ, λ) at each level has to satisfy the following equation :

Φk(φ) = γs(φ)Hk

[

1−
Hk

a

(

1 + f +m− 2f sin2(φ)
)

+
H2
k

a2

]

The normal height Hk of each level can be solved iteratively from Φk using
this formula and geodetic heights hk can be obtained adding Hk and ζ(φ, λ),
the EGM96 height anomaly. Thus we have geodetic coordinates of all levels
and hence the geometry of the refractivity field is rebuilt.

In this section we have explained how to retrieve the geometry of refractivity
field from model levels data. We have explained the method with a model of
gravity acceleration but other models can be used. In the next column, we will
transform geopotential in geodetic heights with other models of gravity acce-
leration and will investigate the influence of this change on the tropospheric
delay.

Experiment’s description
To study the importance of gravity acceleration model used and see only the influence of this model regardless of geoid or geoid undulations, we compute
tropospheric delays in an idealized Earth : the WGS84 reference ellipsoid without topography and geoid. We make calculations in the following
atmosphere :
– Earth’s atmosphere is static without humidity and has the same pressure and temperature all over the ellipsoid.
– Atmosphere is divided in 1680 regular geopotential layers.
– The upper layer is defined as the isogeopotential surface with the value of 82,3758.6 m2.s−2

–We consider the vacuum state above the upper layer.
– Pressure and temperature at each level are interpolated from pressure and temperature profiles defined in the US Standard Atmosphere 76.
These assumptions of no topography and no geoid lead to that : pressure is constant on the reference surface, levels are isogeopotential surfaces and geopotential
levels are parallel surfaces of the Earth’s surface.

Alternative ways of modelling gravity acceleration

Here the idea is to examine in the aforementioned conditions, how tropospheric delays change with respect to the model of gravity acceleration which is unavoidable
to convert geopotential from model-levels data to geodetic height. As height is defined with the respect of the considered gravity, it is necessary to define dynamic
H(d), orthometric H(o) and normal H height accordingly with the chosen model. We have selected the following models for our experiment :
– the constant model : Gravity is constant anywhere on and above the Earth :

g(1) = g0 = 9.80665 m.s−2 ⇒ Φ(1) = g0H
(d)

– the ellipsoidal model : Gravity is determined on the WGS84 ellipsoid surface by the Somigliana formula but constant with altitude :

γ(2)(φ) = γs(φ) ⇒ Φ(2)(φ) = γs(φ)H
(d)

– the spherical and altitude dependent model : Gravity is calculated for an idealized Earth : a sphere with Earth’s mean radius. Gravity is equal to g0 at
the Earth’s surface and decreases with altitude. This formula is obtained analytically using the inverse square law of gravitation :

g(3)(H(o)) = g0
r20

(r0 +H(o))2
⇒ Φ(3)(H(o)) = g0

r0H
(o)

r0 +H(o)

– the ellipsoidal and altitude dependent model : Gravity as defined in the WGS84 :

Φ(4)(φ,H) = γs(φ)H

[

1−
H

a

(

1 + f +m− 2f sin2(φ)
)

+
H2

a2

]

It is usual to approximate the geodetic height by the sum of the normal height and the height anomaly or by the sum of the orthometric height and the geoidal
undulation. As we work with an idealized Earth without geoid, geoidal undulation and height anomaly are equal to zero. This implies that in this context,
orthometric, dynamic and normal heights are equal to the geodetic height.

As the ”ellipsoidal and altitude dependent” model is more realistic among the three models, we have chosen it as reference. So, to the following figures, we
represent geodetic heights and tropospheric delay with the respect to the ”ellipsoidal and altitude dependent”model which have the value 0.

We have a geodetic height difference of 1.1

km for the upper layer (i.e geopotential

height of 84 km) between models which are

altitude dependent and not.

Discrepancy of atmospheric levels variation with

respect to the ”ellipsoidal and latitude dependent” model
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Discrepancy tropospheric delay for a base point at 45̊
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1 mm
We have a difference of 4.5 cm at low

elevation between models which depend on

altitude (”ellipsoidal and altitude dependent”

and ”spherical and altitude dependent”

models) and these which are not dependent

(”constant” and ”ellipsoidal” models). This

difference depends on latitude : at the

equator, it is equal to 12 cm.

The difference between ”ellipsoidal and alti-

tude dependent” and ”spherical and altitude

dependent” models is only of 1 mm at low

elevation.

Conclusion :
– At low elevation, the impact on the tropospheric delays between models are at least millimetric so it is important to have for computations the more

realistic description of the gravity field as possible.

– But to this study, we can also conclude that the principal influence on slant tropospheric delays is the altitude dependency and not the

geometry of the gravity field.
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Earth’s shape influence
To make calculations more convenient, we can approximate Earth’s surface.
This modifies the geometry of the atmosphere since we have considered that
atmospheric levels are parallel surfaces to the Earth’s surface. But what is
the influence of changing atmosphere shape on slant tropospheric delays ? To
answer, we compute with a 2D ray tracing algorithm using Snell’s law at each
level, slant tropospheric delays with several Earth’s surface model in the ray
direction :

Representation of the upper layer of atmosphere with the different models of Earth’s

surface for a ray having south direction and a geodetic latitude of 45̊ .
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– the mean osculating sphere which is only latitude dependent : atmos-
pheric levels are parallel to the circle which has the mean radius of curvature
of the WGS84 ellipsoid at the latitude φ where ray tracing begins. This mean
radius of curvature is :

Rg(φ) =
√

Rn(φ)× Rm(φ)

where Rm(φ) =
a(1−e2)√

1−e2 sin2(φ)(1−e2 sin2(φ))
and Rn(φ) = a√

1−e2 sin2(φ)
are

respectively the WGS84 ellipsoid’s radii of curvature in the meridian plane
and in the prime vertical normal section.

– the osculating sphere in the direction of the ray propagation which is
latitude and azimuth dependent : atmospheric levels are parallel to the oscu-
lating circle which has the same radius of curvature than the WGS84 ellipsoid
in the ray direction. The radius of the osculating circle can be computed using
the Euler’s formula :

Re(φ, α) = Rn(φ)× sin2(α) + Rm(φ)× cos2(α)

where α is the initial azimuth of the ray.

– the ellipse resulting of the intersection between the WGS84 reference
ellipsoid and the plane of ray propagation : atmospheric levels are parallel
to this ellipse.

We have not considered the Earth as a concentric sphere with a mean radius (not dependent on latitude)

because of we know that this model is not sufficient to have millimetric accuracy (it introduces a centimetric

error) on slant tropospheric delays.

The discrepancy between the ”mean oscu-

lating sphere” model and others reaches a

minimum (-4.2 mm) along the north-south

direction and a peak along the east-west

direction. The difference is zero in the inter-

mediate directions : slant tropospheric delay

computed with the ”mean osculating sphere”

model corresponds to a mean tropospheric

delay at each latitude.

Slant tropospheric delays computed with the

”osculating sphere”model are equal in north

and south directions while tropospheric de-

lays computed with the ”ellipse” model are

not the same in these two directions because

the ellipsoidal surface is not symmetric. The

difference is maximal in the north-south di-

rection with a value of 0.2 mm.

Tropospheric delay in function of azimuth for 5̊

elevation angle and base point at 45̊ geodetic latitude.
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To construct this figure, we have computed

at each geodetic latitude slant tropospheric

delays in function of azimuth. We have

picked up the maximum of discrepancy

between the ”ellipse” and ”mean osculating

sphere” models and between the ”ellipse”

and ”osculating sphere” models and have

verified that these maxima are always in the

same directions.

This figure shows us that the maximum

of discrepancy between the ”ellipse” and

”osculating sphere” models is always

sub-millimetric and maximum at 45̊ . This

can be explained in term of geometry : 45̊ of

geodetic latitude is the place where ellipsoid

have the highest asymmetry.

Concerning the maximum of discrepancy between the ”ellipse” and ”osculating sphere” models, it is equal to

zero at the poles and increases towards the equator. This can be explain in term of geometry : at poles, the

mean osculating sphere and ellipsoid are coincident in all direction (Rn(±90) = Rm(±90)) at the contrary of the

equator where the discrepancy between Rn and Rm is maximal and the ellipsoid is the least similar to a sphere.

As the ”ellipse”model is the better realistic Earth’s surface model among the three models, we have chosen it as reference. We can see that slant tropospheric
delay computed with the ”mean osculating sphere”model corresponds to a mean tropospheric delay at each latitude. The difference in terms of slant tropospheric
delays between this model and our reference has a maximum of 8 mm in north-south direction on the equator and a mean value of 4 mm.

Conclusion :
– As we have the objective to achieve millimetric accuracy on slant tropospheric delays, we will conclude that the ”mean osculating sphere”model is not

sufficient in our case.
–The ellipsoidal atmosphere has an azimuthal anisotropy which is not modelled by atmospheric surfaces parallel to osculating

spheres. But the error on slant tropospheric delays of this anisotropy is always sub-millimetric if osculating spheres are used.

Conclusions and perspectives

In the first part, we have seen how rebuilt the geometry of the refractivity field from ECMWF model-levels data and why it is necessary to choose an accurate
model of gravity acceleration. We have studied several gravity models and seen that dependence on altitude of models is important to compute tropospheric
delays. However, the considered gravity acceleration models which are altitude dependent, are mathematically valid only in the vicinity of the Earth’s surface
and we use those up to an height of 84 km. Now we might legitimately wonder if our gravity model has to be changed or not. We plan to provide a more realistic
mathematical description to have a physical model valid at all heights and compare with models which have been studied in this poster.

In a second part, we have considered several geometries of the Earth’s shape at a given site and determined their impact on tropospheric delays. We have seen
that the geometry where atmospheric levels are placed relatively to a sphere with the mean radius of curvature at a given latitude is not sufficient to achieve our
objective which is a millimetric accuracy on slant tropospheric delays.

We have also seen that an osculating sphere to the ellipsoid in a specific direction does model the asymmetry induced by the ellipsoid. The modelling difference is
sub-millimetric on the slant tropospheric delays for all latitudes. Here we worked under a 2D approximation without considering horizontal tropospheric gradients.
If we want to consider these gradients, we have to use a 3D interpretation. So the ”ellipse”model is better suited to have the shape of the refractivity field in all
directions without rebuilding the atmospheric structure over different osculating spheres for each direction.


