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Motivation — 20t July 2007 convection regeneration above Black Forest

= North-west propagating Mesoscale Convective System passed over COPS region
= Squall line in outflow region — southern part decaying upstream of Black Forest

= Convection Regeneration above Black Forest Boxes - approx location
= Intensification in lee > thunderstorms and flooding in Bavaria | of COPS study region

Decay over Regeneration above Intensification Thunderstorm and squall
Rhme VaIIey Black Forest mountains Iine development
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Motivation — Orographically-generated convection poorly forecast by LAMs. This case
study was no exception

Errors from

= Initial and lateral boundary conditions

= Insufficient resolution to represent orographic forcings / processes

= Over (under) estimation of precipitation on windward (leeward) side
= Poor understanding of role of orography in convection regeneration

=« Would regeneration have occurred in absence of Black Forest ?
= Can high resolution modelling with modified orography explain role of
the mountains in convection regeneration ?
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Observations — MCS outflow elevated due to fog in Rhine Valley.

HORIZONTAL WINDS OBSERVED FROM RHINE VALLEY Super Site
Wind profiler (upper), AWS (lower)
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Observations - Convection regenerated above mountains.

Surface potential temperature and horizontal winds from AWSs, and

observed surface precipitation

Outflow reaching western Black Forest Convective precipitation above mountains
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Detailed analysis of case study observations given in Corsmeier et al. 2012
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WRF modelling — control run with ‘real’ orography
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Control simulation to asses
ability of WRF to
reproduce key flow
features

WREF version 3.0.1.1

Initialised at 0000 UTC
(0.25°ECMWEF analyses)

3 nested domains — 2.7km, 900m
& 300m horizontal resolution

120 Vertical levels

All domains 400x400 grid points
Morrison microphysics
Standard M-O Surface layer
Yonsei boundary layer

Betts-Miller-Janic convection in
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WRF modelling of case study — no Black Forest

= Investigate role of
orography by
removing it

= All but outer 50 grid
points of inner domain
set to altitude equal to
Rhine valley

= Smoothed at boundary

= Surface properties
unchanged
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WREF vs Observations — did the control run reproduce
the case study?
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Surface obs from VERA (Steinacker

et al. 06) fingerprint analysis

= Surface equivalent potential
temperature (0,)

= Surface wind vectors

= Vis satellite (obs) / 700 hPa cloud
cover (WRF)

= Surface precipitation
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= Features simulated 1 hour late

= Errorsin initial and lateral boundary
conditions

= Observations and WRF compared
when features aligned NOT at same
times
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WREF vs Observations — did the control run reproduce
the case study?

1 WRF d02 - 1000 UTC |Hx.
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= Southern part of system weaker than observations
« Decay over Rhine Valley because descent in lee of Vosges mountains reproduced

= No fog in Rhine valley in WRF - YSU scheme aggressive in eroding temp inversions
because BL variables vertically mixed (Weisman et al. 2008, Burton et al. 2012)

=« Convergence line at leading edge of outflow with thermally-driven easterly
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WRF vs Observations — did the control run reproduce the
case study?

Observations at 0908 UTC and
WRF at 1000 UTC

= Troposphere profile good
agreement although too moist
above 650 hPa

200

"« Boundary layer — very poor
agreement

= Fog in Rhine Valley absent

: = Fog was present but burned
off early because of
aggressive mixing

(edy) ainssaid

Obvious disagreement between WRF
and observations in boundary layer,
however...

Temperature (°C)
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WRF vs Observations — did the control run reproduce the
case study?

2ssful convection above crests of Black Forest
5e shown in more detail in later slide)

= Thermally-driven plain-mountain flow not generated > weaker

convergence
» Later (not shown) show simulated precipitation significantly less than
observations

=« WRF diverges most clearly in southern end of regenerated convection
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Inability of WRF to reproduce thermal flow

[ [ [

308 -
. ____OBS - Lee
X
E 306 _ WRF - Lee —
© = = - | o \ p _
5 304 ~— . :
S _
% 302
|_
©
= 300F \ e
Q
o
O 2g9s- = -

296 ] | ] | | | ]

8 8.5 9 9.5 10 10.5 11 11.5 12

Time (UTC)
= Temperature gradient of 1 K developed during the morning of the 20t
July between the plain and the mountain (over a distance of ~30 km)
drove a thermal plain-mountain flow
= No temperature gradient in WRF
= Too well-mixed countergradient BL parameterisations fail to allow

generation of temperature gradients () @




Successful simulation of flow features

=« Model error attributed to boundary layer
parameterisation mixing issue and errors in initial
conditions

= Convection regenerated above mountain crests

occurred despite model error

= Convection less intense; but similarly located to
observations

« WRF therefore ‘useful’ for investigating role of

orography in convection regeneration above crests of

Black Forest mountains
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Role of orography in convection regeneration

Results from control run — equwalent potential temperature and convergence (grey)
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Outflow undercut and lifted warm moist valley air above mountain height
« Elevated warm / moist buoyant air

= Convergence ahead of outflow when gust front encountered orography

= Convection initiated above mountains

= Convergence strengthened but was weaker than observations because thermal
plain-mountain not generated
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Origin of high O, air behind gust front

Surface moisture flux (SSR and SSM are marked)

= Comparison of cross sections
of potential temperature
and equivalent potential
temperature suggest that
higher O, is from moisture
From simulated surface
moisture flux we estimate
that 1 kg m2 s of water is
transferred to the boundary
layer

If mixing occurs up to an
altitude of approximately 1
km, the mixing ratio will
increase from 10.5g m=3to

11.5g m=3 over a period of
~2 hrs, which equates to an

Increaseof ~3 K
(e




Convection regeneration without orography?

Real Orography No Orography
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Convection regeneration didn’t occur
without Black Forest
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Downstream convection — no orography case

Inner domain cross sections of 6, and
convergence for no orography case
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=« Outflow propagated
across domain
undisturbed — density
current

=« Warm moist valley air
undercut and still lifted as
in real orography case

=« Higher 6, from prolonged
influence of moisture flux
insufficient for convection

= Convergence and updrafts
generated IMMEDIATELY
as outflow encountered
orography of Swabian Jura
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Downstream convection — no orography case

Inner domain cross sections of 6, and
convergence for no orography case

(b)

=« Outflow propagated
s | across domain
0 | undisturbed — density
current
=« Warm moist valley air
|0s0 | undercut and still lifted as
in real orography case
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Downstream convection — no orography case

Inner domain cross sections of 6, and

convergence for no orography case = Outflow pr0|?agated
(c) s | across domain

w0 | undisturbed — density
current

=« Warm moist valley air
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=« Higher 6, from prolonged
.0 | influence of moisture flux
insufficient for convection
= Convergence and updrafts
w0 | generated IMMEDIATELY
as outflow encountered
orography of Swabian Jura
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Downstream convection — no orography case

Inner domain cross sections of 6, and

convergence for no orography case = Outflow propagated
(d) [ across domain
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=« Higher 6, from prolonged
0 | influence of moisture flux
insufficient for convection
= Convergence and updrafts
w0 | generated IMMEDIATELY
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orography of Swabian Jura
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Downstream convection — no orography sumulation

Middle domain surface 6, wind vectors, convergence

and precipitation for no orography case at 1240 UTC .
precip graphy =« Outflow propagated across domain

undisturbed

= Warm moist valley air undercut and
lifted as in real orography case

= Convergence and updrafts
generated IMMEDIATELY as outflow
encountered orography of Swabian
Jura

= 20 minutes later, convection
regeneration above mountain crests

= Convection regeneration occurred
instantly when outflow
encountered some orography
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CONCLUSIONS

= Convection regeneration occurred because MCS outflow
encountered significant orography

= Undercutting of warm moist air generated elevated
region of warm / moist buoyant air

= Development of convergence line, resulting from forced
orographic lifting and intensification of a gust front

=« Boundary layer parameterisation critical for development
of thermal gradients

= Prolonged undercutting of warm and moist air by MCS
outflow insufficient for convection
= For this case, small but significant forcing required from

orography
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Thank you for listening.

Any Questions?
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