Bridging the scales: Direct SEM imaging of nanometer vibrations for the
analysis of stick-slip behavior at microscales
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Frictional properties at the nanoscale can be regarded as a basic unit describing stick-slip behavior [1]. Since earthquakes are a result of stick-slip motions between

plate boundaries, understanding of nanotribology phenomena possibly play a role in seismology, in particular in understanding the nucleation phase of large scale events.
We present direct observations of freely oscillating cantilevers through scanning electron microscopy [2].
A theoretical model is proposed for the interpretation of the obtained measurements, relating the images to the physical interaction between electron beam and
cantilever. We compare quantitatively such a model with numerical results based on the Euler-Bernoulli equation [3]. The presented results are required for planned
experiments of interactions between oscillating structures and matter at nanoscale.

Experimental setup
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e A cantilever is placed in a hybrid of an Environmental
Scanning Electron Microscope (ESEM) and a Scanning
Force Microscope (SFM) [4].

@ The oscillation is excited by a piezoelectric crystal U,,, at
the base of the cantilever

o A fixed experimental detection characteristic is provided.
® The electron beam scans the oscillating cantilever.

® The vibrational dynamics are analysed with the help of the
synchronous dynamic response of the electron detector
signal using lock-in techniques sychronized to the
excitation frequency.

® Max. Uy, is applied — approximately all electrons leaving
the cantilever are detected —independency of setup
geometry.

Fundamentals

The numerical results based on the standard linear elastic

beam theory for small deflections of a beam. The Euler-Bernoulli
partial differential equation describes the flexural vibration in time
of a one-dimenional beam:
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z(x,¢) is the displacement of the beam at position x and time ¢.
The beam is assumed to have a uniform density p and Young's
modulus E, length L and thickness 4. The boundary conditions
for a cantilever clamped x=0 leads to
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and the eigenfrequencies are given by:
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Theoretical Model

Periodic movement of an excited cantilever:
z(x,y,t) = 4 cos{wt) F(X,y)
with Amplitude 4, excited function ¥, excitation frequency w.

A¥(p,) I

Model of interaction between
oscillating cantilever and electron
beam

p.as instantaneous intersection point between incoming
electron beam #, and the oscillating cantilever surface
and with #, unit vector of tangent plane. i, unit vector of
outgoing beam.

The amplitude of the electron beam oscillation (“scanline”) at
the cantilever surface is

A=A(p,) =AY (p,) tan(®,)

The ESEM image shows at every point p, the detected
intensity 7, over one oscillation period 7'
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where I is the fraction of detected scattered electrons. For
isotropic materials " can be factorized into a part describing
the local scattering density R along the ,scanline” and a
characteristic angular outscattering distribution f,.

The LIA images show the Fourier coefficients of the time series:
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where 7, is the Tchebychev polynomial of degree ».
The integrated kernels:

K!(u)= j K[%)d&) (figure b)
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Discussion

very good comparison between
simulation and measurement

Simulation data
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n=0 S ESEM
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clamped at x=0

Interpretation

 length scale of kernels is given by A
* A depends on x-position

= ESEMI/LIA images are locally described by:
o integrated kernels K’ for a Heavyside-Function of R
at the interface near edges ©
» kernels K, at a 8-type singularity of R (e.g. at the tip) @

SEM micrograph a)
and corresponding
LIA amplitude c). For
comparison the simulated
pictures b) and d). In fig. ) and g)
measured LIA amplitudes of the 2™
and 3" harmonics (twice and three
times of fundamental frequency).
The insets f) and h) are simulated.

Future Prospects

« Interaction of oscillating structure with matter

e Influence of dynamical vibrations on friction

* ESEM/LIA analysis of frictional behavior at
nanoscale
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