
A semi-analytical model was developed originally by Kumar et. al (2009). This model calculates the injection pressure for a single homogeneous aquifer model. It 
assumed a constant pressure and a closed, no flow reservoir boundary and does not include gravity effects in the reservoir.  This semi-analytical model has been 
updated to include heterogeneity, a new method of calculating CO2 phase traveling radii, and assumes a steady-state open flow boundary.  The pressure buildup and 
CO2 saturation front movements calculated by the updated semi-analytical model is compared to the results of a simulation model run with TOUGH2.  
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Semi-Analytical Model Development 

Input Data 
A semi-analytical solution developed by Kumar et al. (2009) has been updated to include multiple rock layers, an expanding constant 
pressure boundary, and an updated phase front definition. The two phase fronts that are calculated include a dry zone region detailed by 
Noh et al. (2004) and a two phase region. The semi-analytical model calculates the well pressure needed to inject CO2 at a constant rate at a 
specified time and the movement of the phase fronts. The updated semi-analytical model can be used for several applications; namely for 
complex sandstone layering formations, large storage reservoirs, and for quick and easy screening of potential CO2 storage sites. 
 
Numerical solutions require significant reservoir characterization effort and simulation time to complete. The updated semi-analytical model 
can be used with limited reservoir data to estimate well pressure expectations and phase front movements. The algorithm developed by 
Kumar et al. (2004) can be implemented with transient, steady-state, and pseudo-steady state flow equations. The updated model assumes 
early-transient flow equations for initialization and steady-state flow equations for later time with a constant pressure boundary.  
 
The updated semi-analytical model has been applied to a simplified CO2 storage reservoir and the results have been compared to a 
comparable TOUGH2 model. The pressure buildup results, defined as the difference between the well pressure and initial reservoir 
pressure, and two phase front movement and the dry zone front movement show reasonable agreement with some differences. 
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Other Information 
•No Capillary Pressure Included 
•Assumed 0.05 Solubility 
•Compared pressure buildup values 
with PetraSim (TOUGH2) Model  

Semi-Analytical Model Algorithm 
1. Assume Pwt>Prt  
2. Calculate the pressure profiles 

 
 
 
 

3. Calculate the flow rate 
A. Early Transient Flow Equation (Initialization) 

 
 
 

B. Steady-State Flow Equation 
 
 
 
 

4. If                                    does not match the 
required flow rate, change Pwt. 
 

A. If                                    ,  increase Pwt 
 

B. If                                    , reduce Pwt 
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Semi-analytical model pressure 
results are 1.1% different from 
TOUGH2 results. The semi-analytical 
model is the “well pressure” and 
the TOUGH2 model pressure “block 
pressure” immediately next to the 
well location. The oscillation could 
be due to numerical stability from 
CO2 injection into those blocks. 
 

This plot shows the TOUGH2 
pressure from the well to the extent 
of the reservoir for 4 different times. 
The semi-analytical results for the 
pressure influence radius are shown 
as points.  The pressure influence 
radius is defined as the point where 
the pressure change in the reservoir 
is zero. The plot to the right shows 
the effects of numerical dispersion. 
 

This plot shows the TOUGH2 pressure from 
the well to the extent of the reservoir for 4 
different times on a semi-log axis. When 
the straight line of the pressure curve is 
extrapolated to the initial reservoir 
pressure (as shown by the black arrows) it 
is apparent that the semi-analytical model 
pressure influence radii is  close to the 
results. The simulation results show large 
numerical dispersion in the results that 
make the previous plot hard to compare. 

Semi-analytical model saturation fronts 
follow the trend of TOUGH2 results and 
are subject to numerical dispersion in 
simulation. 
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Retardation Factors 
The retardation factors are described in detail by Noh et. al. and 
are used to determine the dimensionless velocity of the dry zone 
and the two phase zone. Essentially they describe a concentration 
percentage of difference in CO2 between two different zones and 
are used to expand the fractional flow curve where the 
dimensionless velocities are determined. By using the results 
provided in this paper our results for the front movement did not 
match, especially for the dry zone.  
 
We investigated retardation factors further by using a simpler 
approach shown to the right using 5% mass solubility of CO2 in 
brine. We obtained a similar result for the two phase zone factor 
but not the dry zone. Thus, the results obtained in this 
presentation are by changing the D factors via trial and error.  
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Inputs

Formation Compressibility

CO2 Viscosity

Wellbore radius

Water Viscosity

Target Flow rate

Water Density

CO2 Density

Reservoir Pressure at Top of Perforations

Depth at top of perforation

Corey Curve Equations in PetraSim

Relative Permeability

𝐾𝑟𝑤 = 𝑆∗4 

𝐾𝑟𝑔 =  1 − 𝑆∗ 2 1 − 𝑆∗2  

𝑆∗ =
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑤𝑟 − 𝑆𝑔𝑟
 

sgr 0

swr 0.1

D_BL_dry 1.0025

D_brine_BL -0.07

Saturations

𝐾𝑟𝑤 = 𝑆∗4 

𝐾𝑟𝑔 =  1 − 𝑆∗ 2 1 − 𝑆∗2  

𝑆∗ =
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑤𝑟 − 𝑆𝑔𝑟
 

The results shown include 
pressure profile at the well, the 
pressure buildup, and zone front 
movement for a 4 layer system 
alternating properties to show 
how the layer heterogeneity is 
included in the model. 

Layer Name Layer Thickness, m Layer Permeability, m2 Layer Porosity

Layer 1 50 1.00E-13 0.2

Layer 2 50 1.00E-20 0.0001

Layer 3 50 1.00E-13 0.2

Layer 4 50 1.00E-20 0.0001
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