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A semi-analytical solution developed by Kumar et al. (2009) has been updated to include multiple rock layers, an expanding constant

Input Data
Other Information
1 4

pressure boundary, and an updated phase front definition. The two phase fronts that are calculated include a dry zone region detailed by , Corey Curve Equations in PetraSim . il |
_ _ . s CO2 Density . 4 p— . No Capillary Pressure Included
Noh et al. (2004) and a two phase region. The semi-analytical model calculates the well pressure needed to inject CO2 at a constant rate at a 659.0 kg/m3] K., =S* 1o \ﬂ *Assumed 0.05 Solubility
.o . . . . . . . - : © Simulation, Krw )
specified time and the movement Qf the phase fronts. The updated seml-a}nalytlcal model car\ be used for. several appllcat.lons, namely for Water Density 998.4 kg/m3] Ky = (1— §9)2(1 — S*Z) 0s *‘-‘g  simulation Krg / «Compared pressure buildup values
complex sandstone layering formations, large storage reservoirs, and for quick and easy screening of potential CO2 storage sites. Reservoir Pressure at Top of Perforations 14850611 Pa] S, _5. 0 N\ —Analytical, Krg / with PetraSim (TOUGH2) Model
| | S | o | o | | Wellbore radius 0.10 'm] SN iy — 206 N | paiieal k| [
Numerical solutions require significant reservoir characterization effort and simulation time to complete. The updated semi-analytical model : : wrogr 2 \ f(
e . . . . Depth at top of perforation 1500 m] 2 0.5
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The updated semi-analytical model has been applied to a simplified CO2 storage reservoir and the results have been compared to a Formation Compressibility 5.00E-09 1/Pa] D brine BL .-o 07 0 bocessssce s000000 ogeo0®®” %
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comparable TOUGH2 model. The pressure buildup results, defined as the difference between the well pressure and initial reservoir
pressure, and two phase front movement and the dry zone front movement show reasonable agreement with some differences.
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