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Motivation
Weather generators for hydrological modeling are around for a long time. We, however, wanted to
address the quite distinct requirements of hydrodynamic and ecological modeling of lakes.
Precipitation was not deemed important for modelling input, which allows for a simpler design
compared to Semenov-type weather generators.
The requirements from downstream users were the ability to define climate scenarios as:

Temperature change that propagates to the other variables.
Random episodes of deviation from long-term day-of-year means.
Concrete time series of temperature (from a General Circulation Model (GCM)
or hand-tailored).

Two contributions to this conference use the proposed weather generator VG:
1 ”Advances in estimating the climate sensibility of a large lake using scenario simulations“ by Maria

Magdalena Eder
2 ”Simulating the effect of meteorological variability on a lake ecosystem“ by Marieke Frassl

Both posters were presented in Session “Lakes and inland seas” (HS10.1) (Wednesday, 25 Apr
17:30-19:00). These studies showed that lake model runs using the weather generators meteorologic
input variables resulted in output that was similar to those of model runs using the weather generators
output. This indirect validation with very different models (1D and 3D) indicated that the weather
generator was able to convey the relevant properties of the time series.

The Vector-Autoregressive Weather Generator (VG) modeling overview

1 Convert the input variables to standard-normal using quantile-quantile transformation.
The parameters of theoretical distributions (temperature, long-wave radiation: normal; relative humidity: truncated
normal) were described by triangular functions and fitted to the data. Short-wave radiation and the wind speed
components were transformed with the help of seasonally changing kernel density estimates.

2 Fit a Vector-Autoregressive (VAR) process to the converted data
3 Simulate using the fitted VAR process with added constant or time-varying disturbance
4 Convert back to the fitted marginal distributions.

Meterological input data

The available data were measured hourly in Constance, Germany by the Deutscher Wetterdienst
(DWD). In the subsequent analysis daily means were used.
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VAR order selection and fit
The Schwartz information criterion suggested an
autoregressive order of p = 2, the Hannan-Quinn
criterion suggested p = 4.
→ All following time series were simulated using a
VAR(p=3 days) process.
Order selection was also done considering a
Moving-Average part, but both criteria produces
smaller values with q = 0 for any p.
ut shows no signs of conditional heteroscedasticity
effects.
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Autocorrelation of the residuals for VAR(p=3).

Figure : Residuals ut show no significant autocorrelation.
Hence, the VAR filter is able to capture the linear linear time
dependence in the data.

Autocorrelations of measured and simulated data
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Autocorrelation of standard-normal distributed variables
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Figure : Autocorrelations. Solid lines: measured, dashed lines: simulated

Correlations of measured and simulated data
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θ
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v

1.00 0.72 0.89 -0.48 -0.05 0.04

0.72 1.00 0.43 -0.77 -0.26 -0.17

0.89 0.43 1.00 -0.19 0.09 0.14

-0.48 -0.77 -0.19 1.00 0.14 0.14

-0.05 -0.26 0.09 0.14 1.00 0.81

0.04 -0.17 0.14 0.14 0.81 1.00

Measured
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1.00 0.67 0.89 -0.44 -0.07 0.02

0.67 1.00 0.41 -0.69 -0.21 -0.13

0.89 0.41 1.00 -0.18 0.08 0.13

-0.44 -0.69 -0.18 1.00 0.14 0.12

-0.07 -0.21 0.08 0.14 1.00 0.77

0.02 -0.13 0.13 0.12 0.77 1.00

Simulated, backtransformed
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θ
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v

1.00 0.25 0.60 -0.26 0.06 0.13

0.25 1.00 -0.45 -0.62 -0.27 -0.19

0.60 -0.45 1.00 0.26 0.32 0.31

-0.26 -0.62 0.26 1.00 0.13 0.13

0.06 -0.27 0.32 0.13 1.00 0.78

0.13 -0.19 0.31 0.13 0.78 1.00

Transformed
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1.00 0.24 0.60 -0.27 0.06 0.14

0.24 1.00 -0.45 -0.61 -0.27 -0.18

0.60 -0.45 1.00 0.25 0.32 0.31

-0.27 -0.61 0.25 1.00 0.12 0.12

0.06 -0.27 0.32 0.12 1.00 0.79

0.14 -0.18 0.31 0.12 0.79 1.00

Simulated

Figure : Correlation matrices for measured data, backtransformed simulated data, standard-normal transformed data and
simulated data

Simulation without disturbance
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Disturbing the VAR-Process

To steer the simulation one can adjust the mean of the VAR process by adding a disturbance vector.

ỹt = A1ỹt−1 + ... + Apỹt−p + ũt + mt (1)

m is the added disturbance and ũt multivariate Gaussian noise (both column-vectors of size K ). Ai are
(K × K ) matrices that contain the parameters of the fitted VAR process.

How to get mt?

Assuming we want to change θ (temperature) by ∆θ, first the seasonal marginal distribution
has to be taken into account:

∆θstd
doy =

∆θ

σdoy
(2)

This disturbance has to be further scaled by the Ai ’s:

mdoy =

IK −
p∑

i=0
Ai

∆ydoy (3)

One of the elements of ∆ydoy is ∆θstd
doy . The other elements are estimated using a linear

regression between the θ and the other variables:

mi = COV
(
θstd, yi

)
(4)

Extracting the disturbance from a GCM

Normal distributions were fitted to the measured data and the control
run of the GCM. Seasonalities were captured by describing the
means and standard-deviations with triangular functions. With the
help of these marginal distributions, the bias of the scenario run was
then removed by quantile-quantile transformation resulting in the
time series θGCM.
The disturbance ∆θ is then defined as the difference of θGCM

t to the
means θmeasured

doy .
∆θ is subsequently scaled to mGCM

t using the scheme described
above in “Disturbing the VAR-Process”.
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Figure : Extracting the disturbance from
bias corrected GCM output.

Simulation with GCM disturbance

Figure : Recovered variability by the weather generator VG. The red line is bias-corrected GCM output used as disturbance
for simulation. Black points are generated from 100 realizations. The GCM data used was MPI/OM ECHAM5 A1B Scenario
2040-2060.

Summary

1 The combination of quantile-quantile transformations and a simple vector autoregressive model
resulted in a weather generator able to produce time series sufficiently complex for hydrodynamic
and ecological modelling. This setup was made possible by the fact that precipitation was excluded.

2 Introducing a disturbance into the simulation process allows for hand-tailored or GCM driven
scenarios.


