Studies of large- and fine-scale atmospheric structure using dense seismic networks

Michael A.H. Hedlin¹ and Doug Drob² ¹ Laboratory for Atmospheric Acoustics, U.C. San Diego ² Upper Atmospheric Physics Section, NRL

Distribution Statement A: Approved for public release; distribution is unlimited

April 24, 2012

EGU General Assembly

This talk

Focus on four things:

 Used dense seismic network data to study the spatial extent of infrasound branches and signal dispersion

- 2 Signals from ground-truthed explosions
- 3 Model recordings using rays
- (4) Consider two types of models
 - Ambient background model (G2S)
 - G2S with realizations of gravity waves

Spatial sampling

USArray TA in June, 2007

First event: Focus on spatial extent of wavefield

17,651 kg blast on June 11, 2007

UTTR explosion recorded by TA and four infrasound arrays

Sub thermospheric rays vs data

45° 40° 30° 235° 240° 245° 250° 255°

Vertical components 0.8 - 3.0 Hz BP

Maps of the four branches

Added rays through background G2S

Drob et al. Gravity Wave Model

Drob and colleagues developed method to propagate gravity waves through atmosphere and add to background G2S

It is time dependent

Zonal velocity perturbation

Before adding perturbations ...

... and after (one realization of gravity waves)

Second event: Focus on signal dispersion

Recorded in 2008 by dense network at 300° and part of TA

150-km wide corridor at 300°

Vertical components 0.8 - 3.0 Hz BP

150-km wide corridor at 300°

Vertical components 0.8 - 3.0 Hz BP

150-km wide corridor at 300°

Vertical components 0.8 - 3.0 Hz BP

Added rays shot through background atmospheric specs.

Rays through background model

Rays through perturbed model added

Rays and data

Ray statistics

- Circular bin around each station
- Adjust travel time of each ray for range
- Compute histogram of ray arrival times for each realization

Ray statistics - one realization

2008168 200 400 600 800 Time reduced at 400 m/s

 Histograms of rays through background model (Green) vs rays through gravity wave perturbed model (Red)

Ray statistics

2008168

Average of ten realizations

Ray statistics

2008168

Rays vs envelopes of recorded data

Key findings of study

- Data validate large-scale background atmospheric specs
- ② Rays shot through background G2S do not match signal dispersion or spatial spread of any branch
- ③ Rays shot through perturbed background model accurately predict signal amplitude variation with time, sound penetration into shadow zones near source and away from source

One perturbed atmospheric model

Zonal Velocity Perturbation (m/s) 40 32 24 16 8 -8 -16 -24 -32 -40 -200 -100 100 200 0 Range (km)

Fits independent aspects of the data - dispersion in t, spread in x,y

Key findings of study

- Data validate large-scale background atmospheric specs
- 2 Rays shot through background G2S do not match signal dispersion or spatial spread of any branch
- ③ Rays shot through perturbed background model accurately predict signal duration, amplitude variation with time, sound penetration into shadow zones near source and away from source
- ④ Duration of signals and spatial distribution from seismic data sensitive to amplitude and length scales of the gravity waves

Acknowledgements

- IRIS-DMC for USArray TA data and HLP data
- Matt Fouch (ASU) and David James (Carnegie) for access to HLP data
- Support from NSF under contract EAR-1053576 (M.A.H.H.)
- SMDC under project No. W9113M-06-C-0029 (Modeling work, D.P.D.)
- NASA's GMAO for GEOS-5 data
- NOAA's GFS

