

⁽¹⁾University of Stuttgart, IWS, Stuttgart, Germany ⁽²⁾University of Constance, Limnological Institute, Constance, Germany ⁽³⁾Helmholtz Centre for Environmental Research –UFZ, Magdeburg, Germany

Advances in the scenario study Estimating climate sensibility of a large lake

Universität Konstanz

Downscaling GCM-Data:

Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy Pfaffenwaldring 61, 70569 Stuttgart, Germany www.iws.uni-stuttgart.de

<u>"Climate variability":</u>	Conclusions
$= \text{Length [days] and amplitude} [°C] of episodes colder or warmer than average for this time of year.$ $= Length [days] and amplitude [°C] of episodes colder or warmer than average for this time of year.$ In the measured temperature data, episode length is exponentially distributed with an average value of 5.3 days. Amplitude is normally distributed with $\sigma=2.3$ °C.	 Temperature increase in the lake is weaker than in air temperature. Temperature increase in the epilimnion is weaker than in the hypolimnion. →Enhanced stratification →Less deep water renewal events →Oxygen depletion in the hypolimnion
$\begin{array}{c} 0.30 \\ 0.25 \\ 0.20 \\ 0.20 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.$	 Open questions: Sediment processes under anoxic conditions Halocline development due to biogeochemical processes → chemically induced meromixis
VG reproduces the climate variability of the reference period. Furthermore, stronger episodes can be added to get more variable climate. In the scenarios with enhanced variability (+var and +3 °C+var), mean episode length is 7.8 /7.4 days and σ of the amplitude is 3.5/3.3 °C. Downscaling GCM-Data: Besides producing artificial random climate time series, VG can also be fed with the output of Global Circulation Models . We used the years 2040-2060 of the MPI/OM ECHAM5 A1B scenario. The downscaled data has an average air temperature of 11.35 °C and episodes of 6.35 days and 2.8 °C. \rightarrow Increased mean (+1.8°C) and increased variability	 References: [1] Hodges and Dallimore: Estuary, Lake and Coastal Ocean Model: ELCOM. v2.2 Science Manual. Centre for Water Research, University of Western Australia, 2006. [2] Hipsey, M. et al., Science Manual: Computational Aquatic Ecosystem Dynamics Model: CAEDYM v2, Centre for Water Research, University of Western Australia, 2005 [3] Appt, J.; Imberger, J.; Kobus, H.: Basin-scale motion in stratified Upper Lake Constance. In: Limnol. Oceanogr. 49 (2004), Nr. 4, S. 919-933. Acknowledgements: We would like to thank the Institut für Seenforschung, Langenargen (Institute for Lake Desearch) for the sumply of
$\int_{0}^{11} \int_{0}^{10} \int_{0}^{10$	measurement data. This work was enabled by the financial support by IPSWaT (International Postgraduate Studies in Water Technologies)

Federal Ministr of Education and Research