

Observation of Crustal Deformation around the Pärvie Postglacial Fault, Lapland, Sweden, using InSAR techniques

Matteo Mantovani Hans-Georg Scherneck

ABSTRACT.

The Pärvie postglacial fault is a 155 km long fault that probably snapped in one single and anomalously steep reverse-slip event at the end of the Pleistocene glaciation about 9,500 ybp. Still today the seismicity, limited to roughly one magnitude-3.5 event per 15 years, one M=2 event per year, is anomalous and events have been attributed to the fault system by seismologists. In this project we try to find signatures of deformation using different interferometric Radar Remote Sensing techniques. A stack of ERS and ENVISAT acquisitions straddling over 15 years has been analysed with multi-baseline interferometric stacking (MB) and with the Short Baseline (SBAS) method. Also Persistent Scatterer methods have been attempted, but with less success owing to the lack of strong and sharply confined reflectors. In our findings we notice correlation between mm-sized Displacements in outlined zones near the fault; they appear to correlate with the variations of seismicity that seismologists of the Swedish National Seismic Network have determined. In addition, rockfalls and slumps in areas of typically 1-3 km diameter could be found. The results of SBAS and MB techniques show comparable signatures of deformation. Our results may bracket the range of the ratio of "aseismic" to seismoc slip in this area. The fault scarp itself is not visible in the deformation patterns. Thus we expect rather low values for this ratio.

RESULTS

The estimated deformation of the sector of the fault ranges between 1-2.5 mm/yr.

Good agreement is found between classical DInSAR analysis and PS technique.

Higher rates are fund for the more recent ENVISAT datasets that assess the deformation in 5 mm/yr. Landslide recorded displacement are in the order of 3 mm/yr.

have been discovered. Providing complementing insight into the current state of stability of the zone this work aims to

CONCLUSIONS AND REMARKS

Pärvie fault scarp, seen looking east. Location 34 km west of Kiruna and north of Nikaluoktra valley

AKNOWLEDGEMENTS

This work has been carried out under the "LaFaZONES" project, supported the Swedish National Space Board (contract n. 112/09: 1). The authors acknowledge European Space Agency for providing ERS and ENVISAT data (C1P.7559).

SAR processing was performed using Gamma Software

DInSAR ANALISYS

Images processed: 72 ERS (track 251 – 480, frame 2223) 12 ENVISAT (track 251, frame 2223)

Period of analysis: 17 years (1992-2009) Techniques applied:

Stacking SBAS

> Interferograms generated More than 150

Table 1. Specifications of themulti baselines interferograms used in the PS analysis

Promising results have been achieved so far in the application

of the differential interferometry technique over the Pärvie

fault. Deformation fringes attributed to crustal deformations

have been detected over a segment of the fault and several

slopesinstabilities associated to the generation of the fault

contribute to the Swedish Deep Drilling Program, Post-glacial

Fault Drilling Project and to the ILP Project DynaQlim.

n.	Master	Slave	Baseline [m]	Delta T [days]	n.	Master	Slave	Baseline [m]	Delta T [days]
1	19920813	19930520	22.801	280	29	19931007	19950930	-68.643	723
2	19920813	19990905	-1.458	2579	30	19931007	19951001	133.216	724
3	19920917	19921022	-247.573	35	31	19931007	19960707	120.807	1004
4	19920917	19931007	-93.096	385	32	19931007	19990627	76.790	2089
5	19920917	19950826	-250.195	1073	33	19931007	19990801	216.330	2124
6	19920917	19950930	-161.739	1108	34	19950617	19950722	203.560	35
7	19920917	19951001	40.119	1109	35	19950617	19950723	168.994	36
8	19920917	19960707	27.711	1389	36	19950617	19950826	263.814	70
9	19920917	19990627	-16.306	2474	37	19950722	19950723	-34.566	1
10	19920917	19990801	123.234	2509	38	19950722	19950826	60.254	35
11	19921022	19930729	-282.924	280	39	19950722	19950930	148.710	70
12	19921022	19931007	154.477	350	40	19950722	19990627	294.143	1436
13	19921022	19950617	-266.436	968	41	19950723	19950826	94.820	34
14	19921022	19950722	-62.876	1003	42	19950723	19950930	183.276	69
15	19921022	19950723	-97.442	1004	43	19950826	19950930	88.456	35
16	19921022	19950826	-2.622	1038	44	19950826	19951001	290.314	36
17	19921022	19950930	85.834	1073	45	19950826	19960707	277.906	316
18	19921022	19951001	287.692	1074	46	19950826	19990627	233.889	1401
19	19921022	19960707	275.284	1354	47	19950930	19951001	201.858	1
20	19921022	19990627	231.267	2439	48	19950930	19960707	189.449	281
21	19930520	19990905	-24.259	2299	49	19950930	19990627	145.432	1366
22	19930729	19950617	16.488	688	50	19950930	19990801	284.973	1401
23	19930729	19950722	220.048	723	51	19951001	19960707	-12.409	280
24	19930729	19950723	185.482	724	52	19951001	19990627	-56.426	1365
25	19930729	19950826	280.302	758	53	19951001	19990801	83.115	1400
26	19931007	19950722	-217.353	653	54	19960707	19990627	-44.017	1085
27	19931007	19950723	-251.919	654	55	19960707	19990801	95.523	1120
28	19931007	19950826	-157.099	688	56	19990627	19990801	139.540	35

CHALL SERS

Chalmers University of Technology Earth and Space Sciences Gothenburg, Sweden

NATIONAL RESEARCH COUNCIL Research Institute for Geo-Hydrological Protection Padua, ITALY

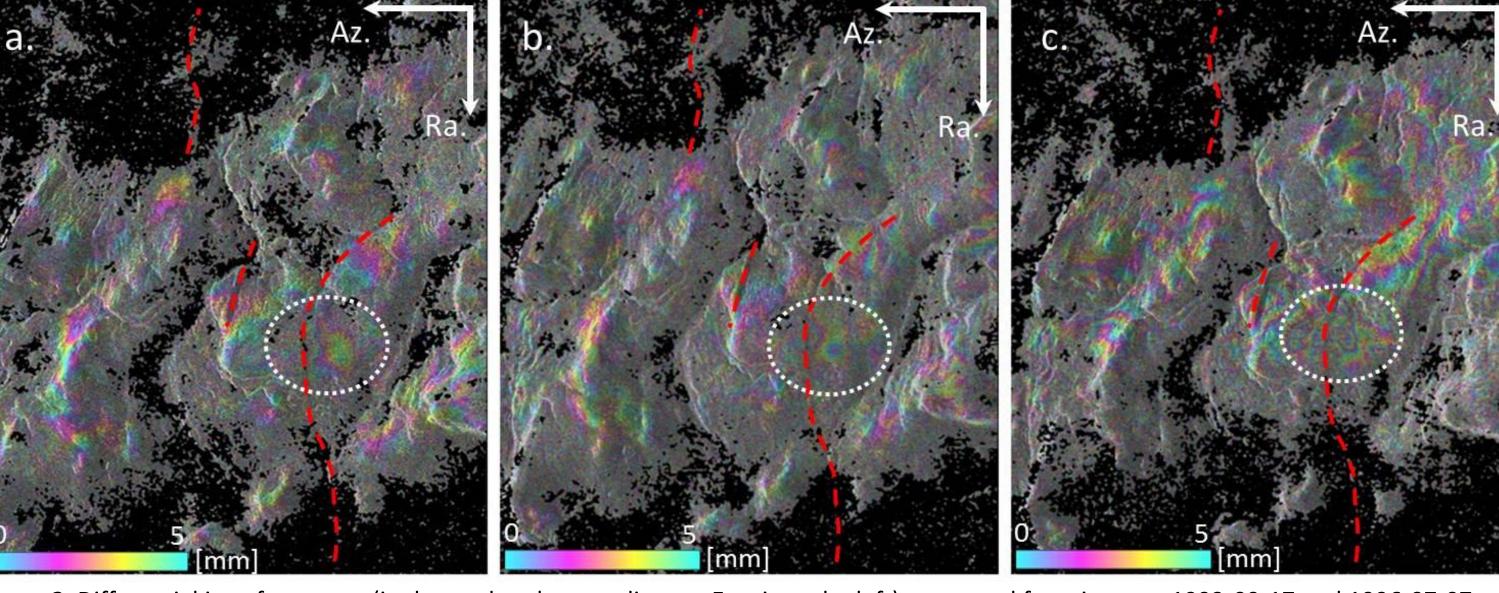


Figure 2. Differential interferograms (in dange-doppler coordinates, East is to the left) generated from images: 1992-09-17 and 1996-07-07, ERS track 480 (a); 1992-07-28 and 1995-07-06, ERS track 251 (b); 2007-08-03 and 2009-08-07, ENVISAT track 251 (c). The red line represents the segments of the Pärvie fault, the dotted white ellipse highlights the deformation area.

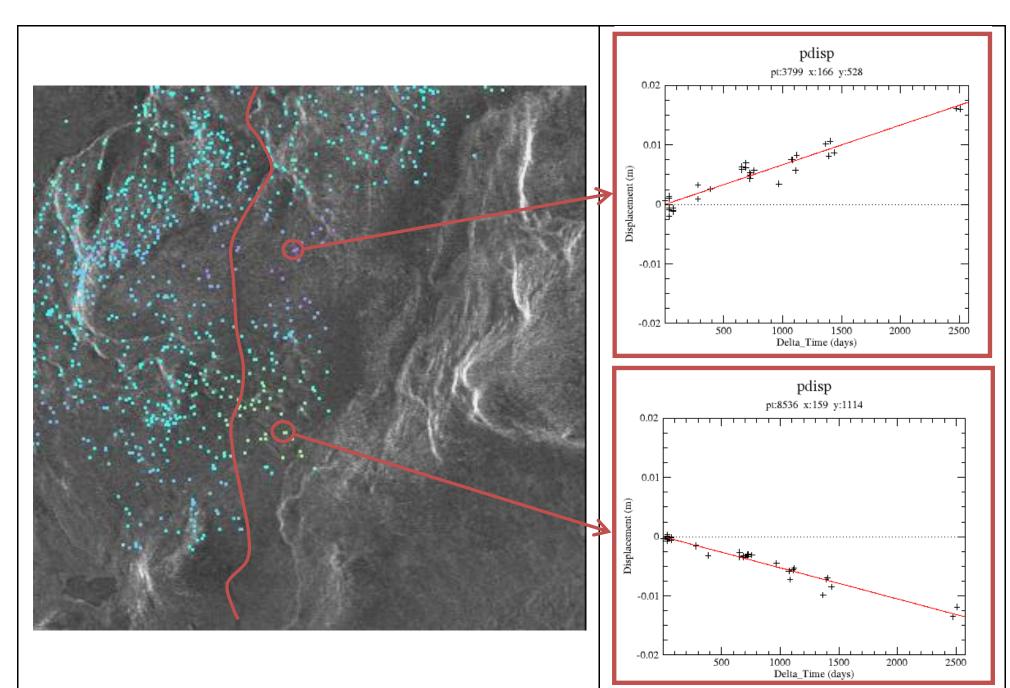


Figure 3. PS map: blue dots are stable scatters. Purple dots are uplifting, yellow dots are subsiding. Graphics on the right of the image represents the linear regression line interpolating the displacement recorded at 2 representative points. The deformation speed for point 3799 is + 2.43 mm/yr while for point 8356 is -1.92 mm/yr.

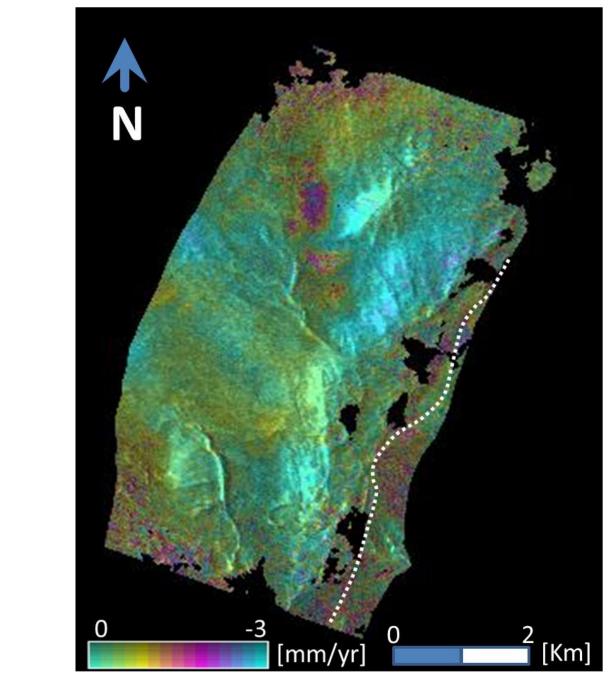


Figure 4. Stacked interferograms superimposed to a geocoded intensity image of a sectors of the Pärvie fault (white dotted line). White arrow highlight the deformations due to a landslide

Matteo Mantovani, IRPI, CNR, Padova, Italy matteo.mantovani@irpi.cnr.it

and black arrows (b).

Figure 1. Detection of the Pärvie fault from an amplitude image (a) and a synthetic interferogram

generated through the use of a 10m resulution DEM. The scarp is highlited by a white rectangle (a)

Hans-Georg Scherneck, Chalmers, Gothenburg, Sweden hgs@chalmers.se