SafeLand guidelines for monitoring and early warning systems in Europe: Design and required technology

Sara Bazin and the SafeLand team

EGU 2012, NH3.12

SafeLand Project and other research on effects of global change on spatial and temporal patterns of landslide risk

Description of work to compile the guidelines

- 1. Review of existing monitoring technologies
- 2. Case histories : analysis of real monitoring data
- 3. Overview of landslide EWSs in operation
- 4. Development of an operational software for EWS
- 5. Development of a toolbox to design an EWS
- 6. Stakeholder example studies (Norway and Slovenia)

1. Review of monitoring technologies

Overview of 30 different remote sensing techniques

Digital total station surveys													B1		Displacement rates									
Sensor	PI	atform	m Recording System Contributing						g A			suitable	suitable	suitable	suitable in few	sunable	suitable in	suitable in	suitable in	suitable	suitable in	suitable in	suitable in	
type				system	n	names		institution	anal	Typical		in few cases	in some cases	in many	cases	in some	Hony cases	few cases	some cases	in many cases	few cases	some cases	many cases	
Active	G	round -	D	Distance -		Total			Repea	Veloc				cases		cases								
sensor	1	based n		meters and digital theodolite		stations		UNIL	(D4.1	none			B3 (*)		A	B3 (*)					B3 (*)			
			th							Extremely	16 mm	C6	B3, C7,		A, B1 C1	C7, C8,	B2, B3, C2,	B3, D2	B2, c2, C3,	B1 C1	A1, A2, A8	C7, C8, C9,	A4, B1, B2,	
	Accu	iracy le	evel			Alternatives				slow	/year		C8, C9,			C9, C10,	C3, C4, D2,		C4, C7, C8,			С10, ВЗ,	C1, C2, C3,	
	Т		cm mm						Max		1.6	15 16	C10, D1		AF AC AR (D1	D3	C0 C0 D2	C9, C10		45 60	D2, D3	C4	
									to 5	veryslow	1.6 m	A5, A6,	B3, C10,		A5, A6, A8, B1,	A1, A2,	B2, B3, C2,	C8, C9, B3,	A4, 8, 82,		A5, A0, 18,	A1, A4, A8,	A2 B1, B2,	
											/year	A8, C0,	D1, D2,		B2 C1, C8, C9,	D1	D3	02	C10		0.9	C.	C3 C4	
										Slow	13 m	A7, A8,	B3, D1		A3, A4, A5, A8,	A2, D1	B2, B3, C2,	10, A13,	A4, A8, B2,	1 , C1	A3, A10,	A4	Az (51, B2,	
Spatial	reso	lution	Ter	mporal	resolu	Ition					/month	A9,A10,			A12, A13 B1, B2,		C3, C4	A14, B3	C2, C3, C4		A12, A13,		C1, 2, C3,	
0.01-1 p	0.01-1 points/m ⁴ D			Depending on surv		ds-years 100-500			0-500			A11,			C1-C4						A14, B3		C4	
Intervals, seconds-years Km.									A12,															
Add	TUON	al costs	s for I	rapid re	espons	Auditional Costs To						A13, A14												
										Moderate	1.8 m	A7, A8,	A13,		A3, A4, A5, A8,	2		A9, A10,	A2, A4, B1,		A3, A5, A9	A2, A4		
											/hour	A9, A10,	A14, B3		A12, A13, A14			A12-A14,	C1		A10, A12-			
												A12			B2, B3, C1-C4			B2, B3, C2-			A14, A14,			
Estimated elaboration time Advantages								Advantag	ges	-					•			C4			D1, D2, D3,			
					Τ	High accuracy				Rapid	3 m	A7, A8,	A13,		A3, A4, A5, A8,			A9, A10,	A4, B1, C1		A2, A3, A4,			
							Temporal and spatial resolution emand			(·	/minute	A9, A10,	A14, B3		A12, A13, A14			A12-A14,			A5,			
					Considerable maximum range				m range			A12			B2, B3, C1-C4			B2, B3, C2-			A9,A10,			
					3D information										U			C4			A12-A14,			
							High flexi Feasibilit	ibility ty of automatic	on of the												B1, B3, C1			
						process			Very rapid	5 m /sec	A7, A8,	A13,A1A		A3, A4, A5, A8,			A9, A10,			A3, A5,				
I				•suita			uitable for early warning syst			r		A9, A10,	4, B3		A12, A13, A14			A12-A14,			9,A10,			
												A12			B1, B2, B3, C1-C4			B2, B3, C1-			A12-A14,			
										Extremely	>5 m	Δ7 Δ8	Δ13		A3 A4 A5 A8			L4 Δ9 Δ10			63 63 65 69			
										rapid	/sec	A9, A10	A14, B3		A12, A13, A14			A12-A14.			A10. A12-			
											,	A12	,		B1, B2, B3, C1-C4			B2, B3, C1-			A14, B3			
				1		l .		- <u>.</u>										C4						
				L	ar	Ias	SIIC	е ту	pes			2	te		an	0					X		\sim	

Sensor

type

Active

optical

sensor

1. Review of monitoring technologies

Overview of 30 different remote sensing techniques

Digital total station surveys

DB

1. Review of monitoring technologies

Sensors of displacement and deformation monitoring - relative occurrence within 89 monitoring sites & early warning potential

Same review for hydro-meteorological and geophysical monitoring

2. Case histories : analysis of real monitoring data

- Compile and interpret monitoring datasets from 14 test sites obtained mainly from 2009 to 2011.
- investigate the correlation between the monitoring parameters : geoindicators
- find their critical values/thresholds based on the background and geological setting

2. Case histories

				Dis	splacement				Hydro(geo)m	eteorolo	ogical pa	rameters	Geophysical parameters				
SafeLand test sites	DGPS	Total station	TLS	GB InSAR	crack- / extensio- meter	tiltmeter	Inclino- meter	DMS	Piezo- meter	DMS	dis- charge	tempe- rature	precipi- tation	Seismic emissions	resistivity	self potential	soil tempe- rature	
Aknes (Norway)	Х	Х	Х	х	Х	х		Х		Х		Х	Х	Х				
Ampflwang (Austria)								х		Х		Х	х		Х	х	Х	
Ancona (Italy)	Х	Х					Х	х	Х	Х		Х	Х		Х	Х		
Bagnaschino (Italy)							Х	Х	Х	Х		Х	Х		Х	Х	Х	
Bindo (Italy)		Х					Х		Х			Х	х					
Casella site (Italy)								х		Х		Х	х					
Gschliefgraben (Austria)					х		х	х	Х	х	Х	Х	х		х	х	Х	
La Valette (France)																		
Jettan (Norway)	Х		х		Х	х						Х	х					
Mannen (Norway)	х		Х	х	х			Х		Х		Х	Х					
Rosano (Italy)								х		Х		Х	Х					
Ruinon (Italy)	Х			Х	Х		Х		Х			Х	Х					
Sonnblick & Mölltaler Glacier (Austria)												х	х		x		х	
Super Sauze (France)	х													х	х	х		
Vallcebre (Spain)	х			х			х		Х			Х	Х	>				
Villerville (France)																		

2. Case histories : analysis of real monitoring data

Conclusions on geo-indicators:

- In most cases a correlation between rainfall/snowmelt/groundwater table variations and displacement is observed, with a delay of 0 to several days
- The most reliable parameter for early warning is displacement
- Other parameters (resistivity, seismic...) help to interpret surface displacement results; necessary for decision making in case of emergencies.

3. EWS screening study

- Aim: analyse existing EWSs to base the guidelines on
- Questionaire sent to ~100 organizations in charge of EWSs - 23 answered with 14 operational units (11 have a EWS in operation, 1 damaged, 1 under construction, 1 stopped)
- Poster by Clément Michoud (UNIL) this afternoon

3.EWS screening study

Monitoring parameters, thresholds and sensors evaluation

- When these two are used only a few sensors (4 in average) are installed.
- Crackmeters are less often used, but when they are, you need many sensors (13 in average) -> Redundancy is important but variable.

3.EWS screening study

Warnings, communication and decision making process

Ways to issue warnings (in %) use

Conclusions of EWS screening

An EWS should:

- be redundant
- be robust
- be simple
- be protected from power and communication loss
- monitor more than one parameter
- integrate all data for good overview
- An EWS should not be:
 - vulnerable to the landslide
- based only on surface displacement data

4. SafeLand operational software

5. Development of a generic EWS toolbox

6. Community and response capability

An EWS is an integrated system

- A EWS should be designed to guide a proper response behavior
- One should consider:

•the community and response capability

•understand the relationship between risk perception and risk communication
•education, regular drifts, long-term funding to secure that residents feel safe

A social study in Norway shows that:
the community favors a local decision (locals working in the operational unit)
openness, involvement and good communication with the residents at an early stage has a positive effect on people's perceived risk

Partners

33 contributors, 14 institutions and 1 end-user 8 countries

- A.M.R.A. Scarl, Italy: Emilia Damiano, Luciano Picarelli
- Ancona , **Italy**: *Stefano Cardellini*
- Centre National de la Recherche Scientifique (CNRS), **France**: *Jean-Philippe Malet*
- Centro Servizi di Geoingegneria S.r.l. (CSG) , **Italy**: *Enza Garbarino, Andrea Gozzi, Mario Lovisolo*
- Geological Survey of Austria (GSA) , **Austria**: *Ivo Baroň, B. Jochum, D. Ottowitz, Robert Supper*
- International Centre for Geohazards, Norwegian Geotechnical Institute (ICG-NGI), Norway : Linda M. Bye, Unni Eidsvig, Bjørn Kalsnes, Anthony Lam, Suzanne Lacasse, Farrokh Nadim, Magnus Sparrevik, Bjørn Vidar Vangelsten
- ITC , **UN** : André Stumpf, now at CNRS

Partners (contd.)

- Joint Research Centre (JRC), **Europe**: *Miet Van Den Eeckhaut, Javier Hervás*
- Risques & Développement (R&D) , France: Eric Leroi
- Università degli Studi di Firenze (UNIFI) , Italy: Emanuele Intrieri
- Geological Survey of Slovenia (GeoZS) , **Slovenia**: Spela Kumelj
- Università degli Studi di Milano-Bicocca (UNIMIB), Italy: Frederico Agliardi
- Universitat Politècnica de Catalunya (UPC), Spain: Josep Gili, Jose Moya
- Université de Lausanne (UNIL) , **Switzerland** : *Clément Michoud, M.-H. Derron, Michel Jaboyedoff*
- Åknes /Tafjord Beredskap, Norway : Lars H. Blikra

We would like to thank the EU 7th Framework Programme for funding this project "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies" coordinated by the International Centre for Geohazard, Norway.

Thank you for your attention!

