

CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM₁₀

danilocustodio@ua.pt

INTRODUCTION

EXPERIMENTAL

500

400

300

200

100

0

100

RESULTS AND DISCUSSION

R²=0,993/

Hi-Vol PM₁₀ (µgm⁻³)

time range 8 h - 48h)

During dust events the contribution of water soluble inorganic ions (WSII) to PM₁₀ mass concentration decreased significantly to values lower than 10%. During non-dust period WSII could represent more than 60% of PM_{10} . Ca^{2+} + carbon species present in PM_{10} . Organic and Elemental carbon account in average to $2.0 \pm 1.4\%$ of PM_{10} . During dust events, PM₁₀ mass concentration at Cape Verde is dominated by insoluble mineral species.

CONCLUSIONS

soluble inorganic ions and PM₁₀. High correlation between chloride and sodium is chloride/magnesium ($r^2 = 0.84$), and for observed between carbonate and calcium $(r^2 = 0.80)$, same as between calcium and potassium ($r^2 = 0.69$), which may indicate the influence of Saharan dust transport. contribution displays a strong deficit in negative ions. The addition of carbonates neutralize this deficit (figure 4): during high dust events not all carbonate is water

Figure 1: A) Total Carbon (OC = Organic Carbon; EC = Elemental C PM₁₀, Soluble ions + CO₃⁻² and non-Carbonated Carbon (OC + EC)