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A promising sensitivity improvement is examined, exploiting the time-dependent, in-situ release of a
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Here, retardation factors R stand for
— either partitioning of tracer between the mobile fluid and the immobile fluid phase: R=1+ KD x s/ (1 - 5)
— or sorption of tracer from the mobile fluid phase to the rock surface: R=1+oxWx(KD/p)*x(1—n)/n
with : s =immobile-phase saturation, o = fluid-rock interface area density,
W = thickness of screened reservoir formation, n = transport-effective porosity,
0 = bulk rock density, KD = partitioning or sorption distribution coefficient.

The research leading to these results has received funding from Baker Hughes (Celle) and from the
Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the GEBO G6 project,
and from the European Community's 7th Framework Programme FP7/2007-2013 under grant WV‘:/VV‘\’/VV'VC 3 i g‘;‘_sr: 3 2 gd : .

agreement n® 227286.

XL26 Wed, April 25, 2012 <EGU2012-13549.pdf> 2/4



Can tracer reactivity overcome the insensitivity of SWIW
methods w.r. to rapid-equilibrium processes?

Ce.

MUSTANG EC FP7, Collaborative Large Scale Integrating Project

|. Ghergut, H. Behrens, M. Sauter
University of Gottingen, Geoscience Centre, Germany

RESULTS

» Non-reactive tracers with different sorptivity or
partitioning yield almost identical signals during SW
pull stages; they are insensitive towards the target
parameters of the SW test; in this respect, W tests
perform better than SW tests.

» The time-dependent release of a ‘daughter’ tracer
from a reactive ‘source’ tracer allows to regain
sensitivity towards target parameters in SW tests.

» Changes in R values produce opposite responses of
‘daughter’ and ‘source’ signals; this enhances their
joint sensitivity towards R.

> In the low-R range, a SW test using reactive tracers
IS more sensitive w.r. to R, than a IW test using
non-reactive tracers with the same R values; In this
sense, SW tests indeed perform a ‘sensitivity
enhancement’, compared to [W tests.

> |f one of the species {'source’, ‘daughter’} happens to
be difficult to measure (i. e., to detect and quantify),
then it would also suffice to measure only one of
them, alongside with a reference tracer; higher sensi-
tivity, however, is obtained from the ratio
‘daughter’/’source’ (which requires measuring both).

» The sensitivity of tracer BTCs towards the respective
target parameter (immobile-phase saturation s, or
fluid-rock interface area density g) is equivalent to
their sensitivity towards the retardation factor R.

This equivalence is linear for g, but heavily
non-linear for s. When R is close to 1 and KD lower
than ~0.3, small uncertainties in R or KD lead to
large uncertainties in s determination.

— In the case of fluid-fluid partitioning (not sorption),
different of values of R (1, 1.21, 1.43) are associated
with different values of immobile-phase saturation s
(0, 4%, 8%, for the assumed KD = 5).

— It is not a prerequisite that the ‘daughter’ tracer
always has to be a non-partitioning tracer, in contrast
to the ‘source’ tracer (the alcohol produced in Tomich
et al. 1973 was soluble only into the brine phase,
while the ester partitioned between brine and oil).
What actually matters, is only the relative retardation
between ‘source’ and ‘daughter’ tracer (I. e., only the
ratio between their KD values). In this study, relative
retardation factors <2 were purportedly considered,
because a sensitivity enhancement is particularly
interesting for such low values.
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Dual-tracer push-pull tests for quantifying residual
CO: saturation and interface area
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MOTIVATION
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GOAL
quantify residual COz2 distribution
(vol. fraction, CO2 — brine interface area), ‘ |
, : : ow paths (‘macropores
alongside with parameters controlling solute
transport (preferential-flow-path aperture,
mobile-fluid — rock interface area).

e tracer

||||||||
[ - -
G|l @ mom o E RS

These parameters cannot be inverted
unambiguously from hydraulic or geophysical

test results. — Need for tracer tests !
residual COz2 saturation doubling —
S 6.3¢-
ge'SE ’ PROPOSED METHODS .
> .
63 » use single-well methods to reduce
s the sensitivity of tracer signals w. r.
? 6 3E-5 LS . . face ; to advective-macrodispersive
< ., attains maximum at finite time _
T parameters, and to enhance their
5e3es [ 50 lovopctn  wm@orop i sensitivity w. r. to non-advective
= L m (10+20)%_3/1 1m(20+10)%_1/1
%6 AE.7 o mm (10+20)%_10/1 1E(20+10)%_3/1 parameters _ .
8§ i 11(20+10)%_10/1 »use brine-phase tracers with high
: diffusivity to quantify macropore
0.216 0.683 f.2 2.16/ 6.83 21.6 _ : _
O Klp—] density (consider using DTS for
sensitivity w.r. to residual saturation is highest at early times '
sensitivity w.r. to interface area is highest at early times measurlng heat as a traC?r!) .
\:Ew >use partitioning tracers with rapid
_ i (20+10)%_10/1 . .
0 204107 31 exchange to quantify residual
= . mn(20+10)%_172 saturation
g 3.1E-1 > agn . .
_ parameter use partltlonlng tracers with slow
O ‘ hiquit _
° N (nterplay) exchange, or (slow) chemical
8 , \o \ % between reactions at interfaces to quantify
o 3-1E-2 esidualsatyration and :
®  (10+20)%_10/1 ', \pterface area interface areas
-5 mn (10+20)%_3/1 OO VI
2 e (10+20)%_1/1
O m (10+20)%_1/2
3'1E_30.0216 0.216 2.16' 21?6

t-6%-K[ p—>/]

sensitive w.r. to e e

Interface area,
6.3E-4  INSensitive W.r,
to residual P
saturation /

o)
W
I
W

We gratefully acknowledge three intellectual sources for this study:

m Carrera et al. 1998 : major ideas for efficient treatment of matrix diffusion
(with interface area as a distributed parameter);

m Jomich et al. 1973 : oillfield use of in-situ hydrolysis of oil-&brine-soluble

6.3E-5

o)
W
n
o)

= (10+20)%_1/2  1108(20+10)%_1/2

Matrix brine-phase tracer evolution

( :
_ m(10+20)%_ 1/1  1008(20+10)%_1/1 ester (A), to form brlne-only-soluble alcohol (B),
6.3E-7 e (10420)%_3/1  1188(20+10)%_3/1
/ ==(1o-20p%_t0n umo+101%_101 1| m | jcha, Nottebohm 2009 : identification of suitable esters undergoing
0218 52 1ef > P05 216 6.83 218 Schaffer, Sauter hydrolysis at COz2-brine interfaces.

The research leading to these results has received funding from Baker Hughes (Celle) and from the
Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the GEBO G6 project,
and from the European Community's 7th Framework Programme FP7/2007-2013 under grant
agreement n® 227286.

www.co2mustang.eu
www.gebo-nds.de

XL26 Wed, April 25, 2012 <EGU2012-13549.pdf> 4/4



