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Adaptation to climate change needs 
to account for the decadal scale 
changes in extremes observed in the 
past decades as well as for projected 
future change in extremes.  
Some  infrastructure, e.g. some dyke 
systems,  currently have little margin 
to buffer the impacts of climate 
change [Klein Tank et al., 2009]. 

•  The distribution of extremes is in 
general asymmetric (Gumbel, 
Frechet, …) and not Normal, 

•  Changes in the mean values do not 
always correspond to changes in 
the extremes. 

Why analyse Extremes and their 
Changes? 

Field et al., 2012. Fig. SPM3 



Extreme Value Assessment in Hydrology 

Gumbel probability density function 

[Gumbel, 1958] 

E. J. Gumbel 



Indices: “moderate extremes”, e.g. 90th percentile. Such events lie well 
within the samples of observations. 

Extreme Value Statistics (EVT): rare and well defined values in the tail 
of the distribution (block maxima, threshold excesses).  

•  Originally designed to assess what might happen outside the range 
of the observed sample, 

•  Theoretical distribution used (e.g. Gumbel, GEV, GPD, …),  
•  Bears often the assumption of independent and identical distributed 

data,  
•  Uncertainty quantification of extrapolations (confidence bands). 
These tools are increasingly used as well in the evaluation of extreme 
events simulated by climate models. 

Extreme Value Assessment Methods 



Climate Change/Climate Variability 

1.  Comparison of two time periods, or 

2.  Inclusion of the non-stationarity in the modeling of 
extremes (e.g. time-dependent extreme value 
distributions).  
Model selection criteria available (e.g. likelihood ratio 
test). 



Non-Stationary Extremes 

Extremes (excesses over 
173m3/s) of Naab River runoff 
at Heitzenhofen in Germany 
(orange). Estimates of mean 
value with a stationary model 
(black) and best-suiting non-
stationary model (blue). 

100-year return levels of 
stationary model (black) and 
best-suiting non-stationary 
model (blue, at time point 
01.01.1996) with 68% 
confidence intervals.  



Non-Stationary Extremes II 

Comparison of 100-year return levels of stationary and non-
stationary model at time point 01.01.1996 (return levels for daily 
river runoff in Southern Germany of time period 1941 – 2000).  



Covariates, “Regression” for Extremes  

Extremes, whose distribution changes with time. 
However, dependence on covariates (possibly model 
outputs): 

• Verification of the model projections necessary, e.g. 
by comparison with observations or reanalysis data in 
a historical time period.  
• Model selection criteria for the choice of covariates 
(e.g. likelihood ratio test). 



Projections of Extremes with Covariates 
Assessment of evolution of monthly winter temperature minima in 
Europe. Blocking index B(t) as additional information (covariate) in 
case the non-stationary model improves results. 

Slope c of location parameter µ(t) = a + c B(t) of a non-stationary GEV 
model. 

ERA40. 

Concatenated ECHAM5/MPI-
OM ensemble members of 
the 20C (1961-2000). 

ECHAM5/MPI-OM  
A1B simulations 
(2160-2199).  

Result: Persistent negative relation between winter temperature 
minima and atmospheric blocking events. In the future, blocking 
looses influence on winter temperature minima in some regions. 



Dependence of Multivariate Extremes 

Meteorological droughts in the 
Duero basin (Central Spain).  
•  Droughts: cumulative 
monthly precipitation deficits 
below a level, 
•  Multivariate EVT model to 
describe extreme droughts 
and their dependence, 
•  Station drought series are 
aggregated to represent 6 
sub-basins in crop regions, 
•  Examine dependence of 
extremes by analysing 
parameters of the M-EVT 
model [cf. Ramos and Ledford, 2009].  Dependence between regions in irrigation season 

(Mai to October) for level 42.7mm/month. Same 
colors for regions with fragility index > 1.5. 



Observed Changes  
of Hydrological Extremes   
[IPCC Special Report on Managing the Risks of Extreme 
Events and Disasters to Advance Climate Change 
Adaptation, Fields et al., 2012] 

There is evidence that some extremes have changed as a result of 
anthropogenic influences, including increases in atmospheric 
concentrations of greenhouse gases.  



Changes of Hydrological Extremes 
in the 21th Century 
[IPCC special report, Fields et al., 2012] 



• Attention to the temporal and spatial dynamics of 
exposure and vulnerability is important.  
Adaptation and disaster risk management can reduce 
risk in the short term, but may increase exposure and 
vulnerability over the longer term.  
Example: dike systems can reduce flood exposure by 
offering immediate protection, but also encourage 
settlement patterns that may increase risk in the long 
term. 

• Low-regrets measures might provide benefits today 
and in the future (early warning systems; risk 
communication between decisionmakers and local 
citizens, irrigation and drainage system, …) 

Adaptation and Management Measures 
 [IPCC special report, Fields et al., 2012] 



Managing the Risks of Extreme 
Events. Example: Droughts [IPCC special 
report, Fields et al., 2012] 



•  Extreme Value Theory (EVT) approaches are an 
important part of the assessment of characteristics and 
changes of hydrological extremes (heavy precipitation, 
droughts, floods, …), 

•  Benefits of EVT are: 
–  Attribution of changes in the likelihood of extreme events, 

indicated by e.g. changes of return levels, to external 
causes (event attribution), 

–  Potential to account for spatial dependence of extremes 
(e.g. max-stable processes [Schlather, 2002]), 

•  EVT approaches can be useful tools to develop low-
regret water management measures, which are 
beneficial today and in the future.  

Summary 
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Thank you for your attention! 
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