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A Bayesian approach to hydroclimatic prognosis using the Hurst-Kolmogorov stochastic process
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10. Hydroclimatic prognosis for temperature at Berlin and
Vienna

1. Abstract

It has now been well recognized that hydrological processes exhibit a
scaling behaviour, also known as the Hurst phenomenon. An appropriate
way to model this behaviour 1s to use the Hurst-Kolmogorov stochastic
process. This process 1s associated with large scale fluctuations and also
enhanced uncertainty in the parameter estimation. When we have to
make a prognosis for the future evolution of the process, the total
uncertainty must be evaluated. The proper technique to this is provided
by Bayesian methods. We develop a Bayesian framework with Monte
Carlo implementation for the uncertainty estimation of future prognoses
assuming a Hurst-Kolmogorov stochastic process with a non-informative
prior distribution of parameters. We derive the posterior distribution of
the parameters and use it to make inference for future hydroclimatic
variables.

4. Posterior distributions of the parameters /. Posterior probability distributions for the AR(1) and

HK parameters for Boeoticos Kephisos river basin

We assume that the non-informative distribution of 8 1s
7(0) < 1/0°

The posterior distribution of the parameters does not have a closed form. It 1s easily
shown (see also Falconer and Fernadez, 2007 for some results and Tyralis and
Koutsoyiannis, 2012 for more detailed results) that

Posterior distributions for the parameters of Boeoticos runoff Posterior distributions for the parameters of Aliartos rainfall
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uo’, ¢,x,~N[(x, R, e)(e, R, e,),c/(e, R, e,)] (6)
5 T -1 T -1 T -1 T -1
o’le, x, ~ Inv-gamma{(n—1)/2,[e, R, e, x, R, x,—(x, R, e,)]/(2e, R, e,)} (7)
~ T -1 T -1 T -1 o T -1 _
m(@lx,) < |R,| b2 l[e.R, e, x, R, x,— (x, R, en)z] (n=1)2 (e, R, en)”/2 1 (8)
Quantiles

We can obtain a simulated sample from this mixture (see for definition of mixture Cose  Men  25% 2% - S0%  75%
2 ° ° . . Boceoticos runoff Density of 11 for the AR process Density of o for the AR1 process
Gamerman and Lopes, 2006,”) simulating from 7z(gp|x,) using a MCMC algorithm and later 7y 61496 2080 22
from the known normal and inverse gamma distributions.

95% confidence regions for
the 30-year moving average
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83.930593 71.48 78.77 8322 88.29 100.45
0.3513 0.1572  0.2847 0.3511 0.4176 0.5462
194.7672 131.8 178.1 195 211.6 2564
86.67381 71.21 79.17 8443 91.09 114.49
0.7386 0.6177 0.6930 0.7357 0.7812 0.8759
liartos rainfall
658.19571 621.6 646 658.2 6704  694.8
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0.1106  —0.09254 0.04089 0.11049 0.18012 0.31521
657.11322  592.6 6384 6573 676  720.6
160.6 138 1514 1595 1685 190.1
0.6235605  0.5139  0.5823 0.6209 0.662  0.7475
rtos temperature
16.96 1676 1689 1696 17.02  17.15
0.7072 0.6085 0.6668 0.7022 0.7419 0.8351 z oA z
03267542 0.1388 02624 03266 0.3909 0.5154 5« " 5 i1
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(DFalconer, K., and Fernadez, C. (2007). “Inference on fractal processes using multiresolution approximation”, Biometrica, 94

(2), 313-334. A
@)Gamerman, D., and Lopes, H. (2006). “Markov Chain Monte Carlo Stochastic Simulation for Bayesian inference”, second

edition, Chapman & Hall, London.

()See details concerning our method in Tyralis, H., and Koutsoyiannis, D. (2012). “A Bayesian statistical model for posterior S e oo T T
prediction of hydroclimatic variables”, (in preparation). . . ’
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11. Hydroclimatic prognosis for Berlin and Vienna,
excluding historical data from last 90 years

5. Posterior predictive distributions

Examined cases — data sets
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8. Posterior probability distributions for the AR(1) and
HK parameters for the temperature at Berlin and Vienna
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Posterior distributions for the parameters of Berlin temperature Posterior distributions for the parameters of Vienna temperature

Density of u for the AR1 process Density of ¢ for the AR1 process Density of ¢, for the AR1 process

95% confidence regions for
the 30-year moving average
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where Hmn and Rm|ﬂ arc given by Here these regions were calculated
excluding the last 90 years from the data
sets. These years were used for
validation.

In the case of Berlin it seems that when
examining the asymptotic behavior of
the HK, the model seems to behave well
Additionally the widest confidence
regions are almost equal to that derived
from the full data set.

In contrast, in the case of Vienna none of
the models was able to catch the
temperature increase that appeared in the
last years. The smaller data set examined
here gives smaller confidence regions.
Notice that in frame 10 the confidence
regions are wider.

It is important to take account of the
variability of the parameters. For
example the case where H is considered
known results in narrower confidence
regions, compared to the case where H 1s
considered to be unknown.

Density of u for the HK process Density of ¢ for the HK process Density of H for the HK process

T -1
Vienna Hin = €m T R [re1y:6ermy] [1:0] R (101 [1:0) (60 — 1) (10)

Boeoticos Kephisos river basin Berlin

The cases examined here are:

Temperature, rainfall and runoff at the Boeoticos Kephisos river basin which is part of the
water supply system of Athens. Its climate is Mediterranean.

Temperature at Berlin which has a humid continental climate.

Temperature at Vienna which lies within a transition of oceanic climate and humid
continental climate.

(11)

T -1
R = Rint1):00m)] [(001):000m)] — B [1:0] (004 1):(00m)] B [1:0] [1:0] 1] [041):(n4m)]

RESULTS
Medians (50% quantiles) of x are almost equal, irrespective of the
model.
Posterior medians of u can be used as estimates of . (Robert, 2006(%)
Distribution and confidence regions of x are wider in the case of HK.
Medians (50% quantiles) of ¢ are almost equal, irrespective of the
model.
Confidence regions of ¢ are wider in the case of HK, because the
distribution is skewed to the right. As a result quantiles smaller than
0.7093  0.6374 0.6830 0.7082 0.7345 50% are almost equal.

Start year 1756 1775 - Distributions of u, H, ¢, are almost symmetrical.
End year 2009 2009

Size, n 254 235

Temperature

The posterior predictive distribution of X+ p+1.0tm+1 := Xntmt15- - - Xnm+1), gIven x, and @ as m —
o0 1S:

Quantiles
Case Mean 2.5%  25%  50% 75%
Berlin temperature
9.181 9.009 9.122  9.18  9.238
0.9275 0.84 0.8934 0.9245 0.9583
0.3767 0.2601 0.3365 0.3766 0.4167
9.2790997  8.803 9.125 9.274 9.427
0.935 0.8322 0.8914 0.9280 0.9703
0.7459 0.6722 0.7192 0.7450 0.7717
enna temperature
9.581 9.423 9.527 9.581 9.634
0.8825 0.7995 0.8505 0.88 0.9117
0.309 0.1858 0.2666 0.3090 0.3514
9.6400404  9.269 9.52  9.637 9.757
0.876 0.7863 0.8396 0.8716 0.9072

Kephisos Boeoticos river basin
Runoff (mm) Rainfall (mm)  Temperature (°C)
Start year 1908 1908 1898
End year 2003 2003 2003 v
Size, n 96 96 106 _ _
Berlin Vienna where Hin — ue; and Rl|n — RHIZ] [1:1]-
Temperature (°C) Temperature (°C)

_ _ —1
A st pem+110,%0) =270 ) Ryl 2 exXpl(—1/20") Xoptomt sremer Bt Rin et m— i) '] (12)
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(¢)Robert, C. (2007). “The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation”, Springer,
New York.

9. Hydroclimatic prognosis for the Boeoticos Kephisos 12. Conclusions

3. Definitions . .
rlver baSln Historical it Noi s o

6. Climatic variable of interest

Here we developed a Bayesian statistical methodology to make hydroclimatic prognosis

Moving average
Py b N

We assume that {x;} 1s a stationary Gaussian stochastic process with mean u, standard

deviation ¢ and autocorrelation matrix R, with elements r; = p,;—, i,j = 1,2, ...,n, where pj—,

the autocorrelation function (ACF), is a function of a parameter ¢ and 0 = (u, o°, @) the

parameter of the process. The distribution of the variable x, = (x; ... x,,) 1s given by

F06l) = 2m) "2 67 Ry ™ expl(—1/20%) %y — 11 €2) Ry (0 — 1 €,)] (1)

where e, = (11 ... 1) is a vector with n elements.
For white noise (WN), the ACF 1s given by

po=1,p:=0,k=12,...,

For a first-order autoregressive (AR(1)) stochastic process, the ACF 1is given by

k
pr=91,k=0,1,.... [p:| <1

For a Hurst-Kolmogorov (HK) stochastic process, the ACF 1s given by
pe=lk+ 12+ k=1 /2= k" k=0,1,...,0<H<1

Following the framework by Koutsoyiannis et al. (2007") we define the climatic variable of
interest to be the 30-year moving average as follows:

t

t
S x). t=nt1, ..., nt29 and x s ==(1/30) 3 x, =n+30, n+31, ... (13)

[=n+1 [=1t—-29

Xy = (130 Y xt
[=t-29

To simulate from the distribution of this variable, we first simulate from (6),(7),(8) and then
use the posterior samples (u,6,H) to simulate from (9) or (12). We examine the following
cases.

- White Noise.

- AR(1).

- Asymptotic behaviour of AR(1) (m — ).

- HK, where we consider that A is known and equal to its maximum likelithood estimate (see
Tyralis and Koutsoyiannis, 2011%).

- HK, where we consider that A 1s unknown.

- Asymptotic behaviour of HK (m — oo, H unknown).

@ Koutsoyiannis, D., Efsratiadis, A., and Georgakakos, K.P. (2007). “Uncertainty assessment of Future Hydrovlimatic
Predictions: A Comparison of Probabilistic and Scenario-Based Approaches”, Journal of Hydrometeorology”, 8 (3), 261-281.
®)Tyralis, H., and Koutsoyiannis, D. (2011). “Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic
process”, Stochastic Environmental Research & Risk Assessment”, 25 (1), 21-33.
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in terms of estimating future confidence regions on the basis of a stationary stochastic
process.

We applied this methodology to five cases, namely the runoff, the rainfall and the
temperature at Boeoticos Kephisos river basin, as well as the temperature at Berlin and
the temperature at Vienna.

We derived the posterior distributions of the parameters of the models. It turned out
that when we took into account the Hurst-Kolmogorov behaviour of the examined
process, the confidence regions of the parameters became wider.

This resulted in a wider confidence region for the 30-year moving average, which
represents a climatic variable.

In all cases the HK model seemed to work well. WN and AR(1) did not seem to
capture the variability.

In one case, when we excluded the last 90 years of the data set of the Vienna
temperature, it seemed that due to the increase of temperature in last decades, the
model did not work well. But when we examined the full data set, the behaviour in last
90 years did not appear extraordinary.






