

Fonds Wetenschappelijk Onderzoek Research Foundation – Flanders

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES K.U.LEUVEN - BELGIUM

Offline evaluation of the Community Land Model - Urban for Toulouse (France) and Melbourne (Australia)

Matthias Demuzere, K. Oleson, A. Coutts, G. Pigeon, N.P.M van Lipzig

Matthias.demuzere@ees.kuleuven.be

European Geoscience Union, 22-27 April 2012, Vienna (Austria)

Community Land Model - Urban

(Oleson et al., 2010)

Community Land Model - Urban

⁽Oleson et al., 2010)

 Model is used with OBSERVED atmospheric forcing (incoming shortand longwave radiation, pressure, temperature, wind speed and humidity from Toulouse and Melbourne

Toulouse, France

Preston (Melbourne), Australia

- Model is used with OBSERVED atmospheric forcing (incoming shortand longwave radiation, pressure, temperature, wind speed and humidity from Toulouse and Melbourne
- Anthropogenic heat is taken into account

- Model is used with OBSERVED atmospheric forcing (incoming shortand longwave radiation, pressure, temperature, wind speed and humidity from Toulouse and Melbourne
- Anthropogenic heat is taken into account
- CLM-U is run for 2 configurations: URB & URB_VEG

- Model is used with OBSERVED atmospheric forcing (incoming shortand longwave radiation, pressure, temperature, wind speed and humidity from Toulouse and Melbourne
- Anthropogenic heat is taken into account
- CLM-U is run for 2 configurations: URB & URB_VEG
- Evaluation is done per season for which a season refers to one month. For example, spring season in Melbourne refers to 15/10-15/11/2004.

Latent heat flux - Preston

• How do fractions contribute to Qe for URB and URB_VEG?

Canyon/Surface T - Toulouse

Summer

Canyon/Surface T - Toulouse

Original CLMU

Adjusted CLMU

 $T_{roof_decoupled}$ - T_{URB}

 $T_{roof_decoupled}$ – T_{URB}

— Troad

Higher canyon air T Sligthly higher wall and road T Cooling of roof T

E B B

Higher canyon air T

Cooling of roof T

Similar canyon air T

Sligthly higher wall and road T

Minor changes in wall and road T

Strong cooling of roof surface T

 $T_{roof_decoupled}$ – T_{URB}

- Twall
 - Troad

Conclusions

- In general, CLMU is able to simulate the urban surface energy balance, with a better performance for Toulouse compared to the Melbourne sites.
- The pervious fraction is able to mimic "vegetation" in the canyon, although e.g. shading of trees is not yet present
- The present anthropogenic heat parameterization is too dynamic.
- As the roof fraction in urban areas can be rather large, the treatment and coupling of the roof to the air aloft / urban canyon properties is important
- Intuitively these results suggest that the choice of "model complexity" relates to the "site complexity".

Thank you!

Matthias.demuzere@ees.kuleuven.be