

Ensemble-based exigent analysis of Hurricane Irene (2011)

April 11, 2012

Daniel Gombos and Ross Hoffman

Irene exigent property damage :: 082412

2

Emanuel (2011) wind damage function

3

U.S. occupied household value (log \$B)

Exigent analysis

- What is the worst case total damage J=w'p'
- Worst case?
 - Damage increases as wind speed increases and as area affected increases.
 - What p' maximizes J over all scenarios on the 90th probability percentile, estimated from the ensemble
 - Feasible p's constrained by the correlations in the forecast ensemble

2d example

Exigent algebra

- Use Lagrangian multiplier to Maximize J = w^Tp'
 Constrained by Q_p² = p'^TS-¹p'
 - Where $Q_p^2 = \chi^2(1/q)$ [Inverse χ^2 of q]
- Solution is $p'_{MAX} = (Q_p/Q_w)Sw$
 - Where $Q_p^2 = w^T S w$
- Example
 - p'=fraction of value damaged by max sustained winds (max over entire forecast)
 - w= summed value of US occupied households closest to each grid-point

Case 3: Irene property damage :: 082412

$$(\overline{p}+\widecheck{p}')\circ w$$

$$v_h = 110kt$$

$$v_t = 30kt$$

$$v = n_p \sim 12$$

$$q = 0.9$$

w = US occupied household dollar value

Note: values for v_h and v_t chosen to produce most extreme damage

Case 3: Irene property damage :: animate

$$(\overline{p}+\widecheck{p}')\circ w$$

$$v_h = 110kt$$

$$v_t = 30kt$$

$$v = n_p \sim 12$$

$$q = 0.9$$

w = US occupied household dollar value

Note: values for v_h and v_t chosen to produce most extreme damage

Limitations

- Must estimate d.o.f.
- Ensemble should be multi-Gaussian (mG)
- Solution is in subspace spanned by the ensemble
- We solve a linear problem, but problem is inherently nonlinear when variables are not mG.

Refinements

- Transform non-mG ensembles into mG ensembles.
 - For nonlinear transforms, damage functional becomes nonlinear
- Linearize nonlinear problems and use an iterative solution method

Applications

- Citrus freeze events
- HDD :: energy demand
- Tornado potential
- Route planning
- Road conditions
- Etc.....

. © Atmospheric and Environmental Research, Inc. (AER), 2012.

Summary:: Irene property damage

