

Axisymetric eigenmodes and soft iron in the von-Kármán-Sodium dynamo

A. Giesecke, F. Stefani & G. Gerbeth Helmholtz-Zentrum Dresden-Rossendorf

in collaboration with C. Nore, F. Luddens & W. Herreman (LIMSI, Orsay), J. Léorat (Observatoire Paris-Meudon), J.-L. Guermond (Texas A&M University)

EGU General Assembly 2012, Vienna, April 23 - 27, 2012

We are grateful for support by the DFG collaborate research center SFB-609.

André Giesecke et al. (HZDR)

Soft iron in the von-Kármán Sodium dynamo

Motivation: Von-Kármán-Sodium (VKS) dynamo

- flow of liquid sodium driven by two counterrotating impellers
- mean flow structure: two poloidal cells, two toroidal cells (S_2T_2)
- bended blades for optimization of poloidal to toroidal velocity ratio
- axisymmetric dynamo action but only with soft iron impellers with permeability $\mu_{\rm r} \approx 65$
- manifold field characteristics: (quasi-)stationary, bursts, oscillations, reversals, hemispherical

Non-uniform conductivity/permeability

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left[(\mathbf{u} \times \mathbf{B}) + \frac{1}{\mu_0 \mu_r \sigma} (\nabla \ln \mu_r \times \mathbf{B}) - \frac{1}{\mu_0 \mu_r \sigma} (\nabla \times \mathbf{B}) \right]$$

- non-uniform conductivity/permeability provides potential "support" of dynamo action by coupling of B^{tor} and B^{pol}
- ⇒ Busse/Wicht: periodic conductivity modulation & uniform flow
- additional term in the induction equation that acts like a velocity $\mathbf{V}^{\mu} = \frac{\nabla \ln \mu_{r}}{\mu_{0} \sigma \mu_{r}} \text{ with } \nabla \cdot \mathbf{V}^{\mu} \neq 0$
- ⇒ paramagnetic pumping: i.e. suction of magnetic field into region with larger μ_r

Internal jump conditions for **B** and **E**

$$\begin{split} \mathbf{n} \cdot \left(\mathbf{B_1} - \mathbf{B_2}\right) \ &= \ 0 \qquad \mathbf{n} \times \big(\frac{\mathbf{B_1}}{\mu_{\mathrm{r},1}} - \frac{\mathbf{B_2}}{\mu_{\mathrm{r},1}}\big) \ &= \ 0 \quad \text{for permeability jump} \\ \mathbf{n} \cdot \left(\mathbf{j_1} - \mathbf{j_2}\right) \ &= \ 0 \qquad \mathbf{n} \times \left(\mathbf{E_1} - \mathbf{E_2}\right) \ &= \ 0 \quad \text{for conductivity jump} \end{split}$$

André Giesecke et al. (HZDR) Soft iron in the von-Kármán Sodium dynamo Vi

numerical solutions of induction equation with non-uniform $\mu_{\rm r}$ & σ

$$\frac{\partial}{\partial t}\mathbf{B} = \nabla \times \left(\mathbf{u} \times \mathbf{B} - \frac{1}{\mu\sigma(\mathbf{r})}\nabla \times \frac{\mathbf{B}}{\mu_{\mathrm{r}}(\mathbf{r})}\right)$$

prescribed velocity field u(r)

no backreaction on the flow

 \blacksquare here: spatial variations of $\mu_{\rm r}$

kinematic approach: $\mathbf{B} \sim \mathbf{B}_0 e^{\gamma t} \Rightarrow \gamma \mathbf{B} = \mathcal{M} \mathbf{B}$

- \Rightarrow compute growth rates (eigenvalues) and dynamo eigenmodes
- \Rightarrow dominant field geometry (azimuthal mode, equatorial symmetry)

Numerical approach

- turbulence unimportant \Rightarrow induction caused by mean flow alone
- numerical simulations with 2 distinct schemes
 - (1) spectral/finite element approximation (SFEmANS, Guermond et al.)
 - (2) hybrid finite volume/boundary element method (timestepping)
- \Rightarrow insulating boundary conditions & arbitarly spatial distributions for σ, μ_r (axisymmetric for spectral scheme)

Prescribed velocity field & numerical approach

5/11

MND bulk flow: v = ∇×A with A ∝ (f₁(r) sin(πz/2H), 0, f₂(r) sin(πz/H)) ⇒ laminar flow with S2T2 topology: 2 poloidal & 2 toroidal eddies
 side layer with stagnant fluid & lid layers behind impellers
 disks: axisymmetric distributon with large permeability μ_r = 1 · · · 100
 no internal boundary conditions between disks and fluid flow

Growth rates for the axisymmetric mode (m0)

- significant shift towards dynamo threshold (but only B_φ): *purely toroidal* mode becomes dominant for μ_r≥17
- \blacksquare mixed mode hardly affected by $\mu_{\rm r}$
- flow magnitude (Rm) and BC unimportant for $\mu_r \gg 1$
- Cowling also valid for $\mu_r = \mu_r(\mathbf{r}, t)$ \Rightarrow no *m*0 dynamo action possible

André Giesecke et al. (HZDR) Soft iron in the von-Kármán Sodium dynamo Vienna, Apr

Comparison of m0- and m1-mode

• $\mathrm{Rm} \approx 30...40 \Rightarrow \mathrm{axisymmetric} \ B_{\varphi} \ \mathrm{dominates} \ \mathrm{for} \ \mu_{\mathrm{r}} \gg 1$

■ fast decay of poloidal *m*0 mode (even faster than *m*1 mode)

• sufficient large $\operatorname{Rm} \Rightarrow$ "equatorial" (*m*1) dynamo ($\operatorname{Rm}^{c} \approx 63$)

Coupling of poloidal and toroidal components

• consider axisymmetric part of induction equation $(b_r^0, b_z^0, b_{\omega}^0)$

$$\frac{\partial b_r^0}{\partial t} = -\frac{\partial}{\partial z} (u_z b_r^0 - u_r b_z^0) - \eta \left[-\frac{\partial}{\partial z} \left(\frac{\partial}{\partial z} \frac{b_r^0}{\mu_r} - \frac{\partial}{\partial r} \frac{b_z^0}{\mu_r} \right) \right]$$

$$\frac{\partial b_{\varphi}^{0}}{\partial t} = \frac{\partial}{\partial z} (\boldsymbol{u}_{\varphi} \boldsymbol{b}_{z}^{0} - \boldsymbol{u}_{z} \boldsymbol{b}_{\varphi}^{0}) - \frac{\partial}{\partial r} (\boldsymbol{u}_{r} \boldsymbol{b}_{\varphi}^{0} - \boldsymbol{u}_{\varphi} \boldsymbol{b}_{r}^{0}) - \eta \left[-\frac{\partial^{2}}{\partial z^{2}} \frac{\boldsymbol{b}_{\varphi}^{0}}{\mu_{r}} - \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\boldsymbol{b}_{\varphi}^{0}}{\mu_{r}} \right) \right) \right]$$

$$\frac{\partial b_z^0}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(u_z b_r^0 - u_r b_z^0 \right) \right] - \eta \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(\frac{\partial}{\partial z} \frac{b_r^0}{\mu_r} - \frac{\partial}{\partial r} \frac{b_z^0}{\mu_r} \right) \right]$$

b $_{r}^{0}$, $b_{z}^{0} = 0 \& b_{\omega}^{0} \neq 0$ is a possible solution \Rightarrow purely toroidal mode • $b_r^0, b_z^0 \neq 0 \Rightarrow$ shearing by $u_{\varphi} \Rightarrow b_{\varphi}^0 \neq 0 \Rightarrow$ mixed mode

growth rate of mixed mode is fixed by its poloidal components! $\Rightarrow b_{i}^{0}$ "follows" b_{r}^{0}, b_{z}^{0} but there is no way to transfer magnetic field from toroidal to poloidal component $\Rightarrow b_r^0, b_z^0$ cannot "follow" b_{ω}^0

 at the fluid-disk interface
 paramagentic pumping causes a localized electromotive force:

 $\mathcal{E}^{\mu} = \mathbf{V}^{\mu} \times \mathbf{B} = \frac{1}{\mu_0 \sigma \mu_r} \frac{\nabla \mu_r}{\mu_r} \times \mathbf{B}$

which drives an electric current

 at the fluid-disk interface paramagentic pumping causes a localized electromotive force: *ε*^μ = V^μ × B = 1/μ₀σμ_r ∇μ_r/μ_r × B which drives an electric current
 thin disks ⇒ V^μ ∝ ∂μ_r/∂z e_z

 \Rightarrow no interaction with $B_z \mathbf{e}_z$

at the fluid-disk interface paramagentic pumping causes a localized electromotive force: $\mathcal{E}^{\mu} = \mathbf{V}^{\mu} \times \mathbf{B} = \frac{1}{\mu_0 \sigma \mu_r} \frac{\nabla \mu_r}{\mu_r} \times \mathbf{B}$ which drives an electric current thin disks $\Rightarrow \mathbf{V}^{\mu} \propto \frac{\partial \mu_{r}}{\partial z} \mathbf{e}_{z}$ \Rightarrow no interaction with $B_z \mathbf{e}_z$ interaction of $B_r \mathbf{e}_r$ and \mathbf{V}^{μ} \Rightarrow azimuthal currents with opposite sign at front/back side

at the fluid-disk interface paramagentic pumping causes a localized electromotive force: $\mathcal{E}^{\mu} = \mathbf{V}^{\mu} \times \mathbf{B} = \frac{1}{\mu_0 \sigma \mu_r} \frac{\nabla \mu_r}{\mu_r} \times \mathbf{B}$ which drives an electric current thin disks $\Rightarrow \mathbf{V}^{\mu} \propto \frac{\partial \mu_{r}}{\partial z} \mathbf{e}_{z}$ \Rightarrow no interaction with $B_z \mathbf{e}_z$ interaction of $B_r \mathbf{e}_r$ and \mathbf{V}^{μ} \Rightarrow azimuthal currents with opposite sign at front/back side • interaction of $B_{\varphi} \mathbf{e}_{\varphi}$ and \mathbf{V}^{μ} gives rise for an axisymmetric poloidal current $\mathbf{j}^{\mathrm{p}} = j_r \mathbf{e}_r + j_z \mathbf{e}_z$ sustainment/amplification of B_{ω} \Rightarrow

Summary & Conclusions

10 / 11

(1) localized high permeability domain within conducting fluid flow is responsible for paramagnetic pumping

> selective enhancement of B_{φ} and domination of an axisymmetric purely toroidal mode that is hardly affected by the flow

- (2) a second axisymmetric mode consisting of a poloidal and a toroidal component (mixed mode) is hardly affected by μ_r and lies below the purely toroidal mode or the *m*1-mode
- (3) the purely toroidal mode can be obtained only by explicitly considering the internal permeability distribution and the jump conditions at the fluid-disk interface

the purely toroidal mode may play an important role for axisymmetric dynamo action but in our simple axisymmetric set-up no possibility for a closure of the dynamo cycle is provided (**Cowling's theorem** is valid also for time and space dependent $\sigma \& \mu_r$ (Hide & Palmer))

- non-axisymmetric μ_r couples a poloidal mode to the (previously) purely toroidal mode ⇒ role of blades?
 ⇒ but coupling also from azimuthal σ variation
- dominant purely toroidal mode does not exists for high/low conducting disks because there is no enhancement mechanism
- growing axisymmetric solutions can be obtained applying mean field effects that parametrize induction of small scale turbulent flow (α-effect, Ω × j-effect), e.g. a growing m0-mode is possible for very small α-effect (Giesecke et al. PRL 104, 2010) but existence and pattern of α in the experiment remains unknown

Simplified model for the toroidal m0-mode

purely toroidal mode is mostly localized inside disks and impact of flow remains negligible \Rightarrow idealized disk-fluid model with free decay

• disk with radius R = 1, permeability $\mu_r \gg 1$ and thickness d within infinite cylindrical fluid region with $\mu_r = 1$

$$\begin{split} \mu_{\mathrm{r}} \gamma B_{\varphi} &= (\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} - \frac{1}{r^2}) B_{\varphi}, \quad r < 1 \quad |z| < d/2 \\ \gamma B_{\varphi} &= (\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} - \frac{1}{r^2}) B_{\varphi}, \quad r < 1 \quad |z| > d/2 \end{split}$$

BC: $B_{\varphi} = 0$ at r = 1 and symmetry considerations suggest:

$$B_{\varphi} = A_1 J_1(kr) \cos l_1 z, \quad r < 1, \quad |z| < d/2, \quad l_1 = \sqrt{-\gamma \mu_r - k^2}$$

$$B_{\varphi} = A_2 J_1(kr) e^{-l_2 z}, \quad r < 1, \quad |z| > d/2 \quad l_2 = \sqrt{k^2 + \gamma}$$

$$J_1$$
: Bessel function of 1st kind, $k pprox$ 3.8317 to fulfill $B_arphi=$ 0 at $r=1$

 $\Rightarrow \text{ implicit non-linear equation} \quad l_2 \cos\left(\frac{l_1 d}{2}\right) - l_1 \sin\left(\frac{l_1 d}{2}\right) = 0$ for γ as function of d and μ_r :

André Giesecke et al. (HZDR) Soft iron in the von-Kármán Sodium dynamo

Comparison with numerical solutions

11 / 11

⇒ although the dominant purely toroidal mode is localized to a very small volume its decay time determines the overall decay of the axisymmetric azimuthal magnetic field.

André Giesecke et al. (HZDR) Soft iron in the von-Kármán Sodium dynamo Vienna, April 24, 2012

EMF & electric current

 loacalized EMF (left) drives poloidal axisymmetric current concentrated around the impellers (right)

- j^p is source for the enhancement of azimuthal axisymmetric field mode but does not provide a dynamo source
- azimuthal current remains negligible

Growth rates for m1 mode

growth rates increases with increasing µ_r (saturation for µ_r ≫ 1) ⇒ reduction from Rm^c = 76 for µ_r = 1 to Rm^c = 55 for µ_r = 100
 distinct behavior for free decay (Rm = 0) and Rm > 0

• increasing $\mu_0 \sigma \Rightarrow$ increase of $\operatorname{Rm}^{\operatorname{crit}} \to \gtrsim 80$

Decay rates

André Giesecke et al. (HZDR) Soft iron in the von-Kármán Sodium dynamo Vienna, Ap

Vienna, April 24, 2012 11 / 11

Vanishing tangential field BC

External boundary conditions

Vacuum BC

External BC

- vanishing tangential fields or pseudo vacuum resemble setup with infinite permeability in the exteriour
- nearly no influence in comparison with insulating boundary conditions

Ohmic decay

Structure of field geometry essentially determined by material properties

André Giesecke et al. (HZDR)

Soft iron in the von-Kármán Sodium dynamo

Vienna, April 24, 2012

11 / 11