

CC () BY

Objectives of sensitivity analysis

"What model parameters have the largest influence on the simulation results?"

"What model parameter(s) can be fixed at any nominal values with **negligible influence** on the model results?"

"How to guide future characterization studies and what effort should I spent?"

Variance-based global sensitivity analysis

Basic idea:

Var(Y) = Variance of the model output Y
 ~ measure of uncertainty

 $(\mathbf{\hat{I}})$

BY

(CC

Variance-based global sensitivity analysis

Basic idea:

- Var(Y) = Variance of the model output Y
 ~ measure of uncertainty
- If I knew the true value of the input parameter X1
 > expected reduction in the variance of Var(Y)
 = measure of sensitivity

(†)

Variance-based global sensitivity analysis

Basic idea:

- Var(Y) = Variance of the model output Y
 ~ measure of uncertainty
- If I knew the true value of the input parameter X1
 > expected reduction in the variance of Var(Y)
 = measure of sensitivity

Tools: Sobol' indices (Sobol' 1993; Saltelli et al., 2008)

$$S_1 = V_1 / V_Y = V(E(Y | X_1 = x_1^*)) / V_Y$$

(†)

Variance-based global sensitivity analysis

→Explore the sensitivity to input parameters over their whole range of variation (i.e. in a global manner)

→Fully account for possible interaction between them

→Applicable without introducing a priori assumptions on the mathematical formulation of the landslide model

Modaressi Farahmand-Razavi, 2008)

ces pour une Terre durable

Objective:

Ranking the 7 parameters of the Hujeux constitutive law

Input	Vol.	Shear	Non-	Internal	Dilatanc	Plastic	Initial
factor	comp.	mod.	linearity	friction	y angle	comp.	critical
	mod.		coeff.	angle			pressure
Symbol	K	G	n _e	ф	Ψ	β	$\mathbf{p}_{\mathbf{c}0}$
Unit	MPa	MPa	-	0	0	-	MPa
Lower value	180	83.25	0.225	19.125	14.25	20.625	0.375
Upper value	300	138.75	0.375	31.875	23.75	34.375	0.625

20% uniform variation around values of Laloui et al., 2004

Ŧ

Meta-model-based strategy

Basic idea:

replace the computationnally intensive landslide model G by an approximation g (= meta-model)

→ Costless-to-evaluate analytical function

→ Constructed using a very limited set of input parameters' configurations

$$y = G(x) \approx g(x)$$

Gaussian Process – intuitive definition

Basic idea:

« The closer the unknown value from a known value, the more similar » → Correlation betw. random variables

$$R(\boldsymbol{u};\boldsymbol{v}) = \exp(-\sum_{i=1}^{d} \left\|\boldsymbol{u}_{i} - \boldsymbol{v}_{i}\right\|^{2} / \boldsymbol{\omega}_{i})$$

Gaussian correlation model

 ω = correlation length

If $u=v \rightarrow correlation = 1$ If $|u-v| \rightarrow \infty \rightarrow correlation \rightarrow 0$

(†)

$(\mathbf{\hat{I}})$ **Application to the La Frasse landslide** Using the GP model 1890 m **Observation point N°1** → Selection of 30 input configurations : \approx 99 hours (with Observation point N°2 a cluster of 30 CPU); ZOOM 406.3 kN/m →Construction of the GP model Slip surface and validation : ≈ 6 hours. **→**~4.5 days 600.0 kN/m Observation point n°1 Observation point n°2 Horizontal displacement (m) **30 samples** 100 150 200 250 50 100 150 200 250 50 Time (day) Time (day) Géosciences pour une Terre durable

> 23

In summary...

Global sensitivity analysis → very useful to guide further investigations

BUT: requires a large number of simulations !

Use of meta-model (here Gaussian Process)
 approximate using a few model evaluations

BUT:

→ Careful evaluation of the approximation quality
 → Account for the approximation error in the sensitivity analysis

Thank you for your attention !

Some advertising...

Rohmer, J., Foerster, E., 2011. Computers & Geosciences, Vol. 37, Issue 7, 917–927

Acknowledgments

This work was funded under the BRGM's Directorate of Research project "VULNERISK" and "INCERTITUDES".

The application is based on the finiteelement landslide model built by the LMS of EPFL.

