Coherence of off-shore steric height and island sea level

Joanne Williams, Chris W. Hughes
National Oceanography Centre, Liverpool, UK
joll@noc.ac.uk

European Geophysical Union April 2012

How does the sea-level (ssh) signal at a mid-ocean island relate to sea-level in deep water nearby?

Bathymetry in the OCCAM 1/12 model

NATURAL

ENVIRONMENT

Excluding continental waters

NATURAL

ENVIRONMENT

Small, mid-ocean "islands"

NATURAL

ENVIRONMENT

% of variance =
$$100 \frac{\text{var}(h_{island}) - \text{var}(h_{island} - Ah_{deep})}{\text{var}(h_{island})},$$

where A is regression coefficient obtained by regressing h_{island} onto h_{deep} .

% variance of ssh at island explained by ssh in deep water

Effect of depth of ring

NATURAL

ENVIRONMENT

Effect of depth of ring

(i) ssh by ssh deep

(ii) ssh by ssh mid-deep

% variance of ssh at island explained by ssh in deep water

% variance of ssh at island explained by steric in deep water

(i) ssh by ssh deep

(ii) ssh by steric

$$\underbrace{\rho_0 g \eta}_{\text{ssh}} = \underbrace{\int_{-H}^{\eta} \rho g \mathrm{d}z}_{\text{bottom pressure}} - \underbrace{\int_{-H}^{0} \rho g \mathrm{d}z}_{\text{steric height}}$$

% variance of ssh at island explained by steric in deep water

(i) 0-6 months

(ii) 18+ months

% variance of ssh at island explained by bp in deep water

Equivalent barotropic structure in Southern Ocean

Frequency dependence of coherence

Time series: h(t) ssh at the island and $\phi(t)$ steric in the deep water.

Cross-correlation spectrum: $R_{h\phi} = E(\phi(t)h(t+\tau))$

Cross power spectral density: $S_{h\phi}(\sigma) = \sum_{m=-\infty}^{\infty} R_{h\phi}(m) \exp^{-jfm}$

Magnitude squared coherence:

$$\gamma_{h\phi}(\sigma) = \frac{|S_{h\phi}(\sigma)|^2}{S_{hh}(\sigma)S_{\phi\phi}(\sigma)},$$

(Matlab function mscohere.m)

 $\gamma_{h\phi}(\sigma)$ has values between 0 and 1 and indicates how well h, the signal at the island, corresponds to ϕ , the signal in deep water, at each frequency.

Frequency dependence of coherence

ssh by ssh deep

NATURAL

ENVIRONMENT

RESEARCH COUNCIL

EGU April 2012,

Vienna

Frequency dependence of coherence

(i) ssh by steric deep

(ii) ssh by bp deep

$$\underbrace{\rho_0 g \eta}_{\text{ssh}} = \underbrace{\int_{-H}^{\eta} \rho g \mathrm{d}z}_{\text{bottom pressure}} - \underbrace{\int_{-H}^{0} \rho g \mathrm{d}z}_{\text{steric height}}$$

ssh by ssh deep

(i) ssh by steric deep

(ii) ssh by bp deep

$$\underbrace{\rho_0 g \eta}_{\text{ssh}} = \underbrace{\int_{-H}^{\eta} \rho g \mathrm{d}z}_{\text{bottom pressure}} - \int_{-H}^{0} \rho g \mathrm{d}z$$

