

Quantification of random & systematic XCO₂ and XCH₄ retrieval errors

M. Buchwitz, M. Reuter, O. Schneising, J. Heymann, H. Bovensmann and J. P. Burrows

Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

CarbonSat

CarbonSat [1,2] has been selected by ESA to be one of two candidate missions for Earth Explorer 8 (EE-8) to be launched around 2019.

The main Level 2 data products of CarbonSat are dry-air column averaged mole fractions of CO₂ and methane, denoted XCO₂ and XCH₄, useful to get quantitative information on regional / local surface fluxes (emission and uptake).

In addition, CarbonSat will potentially deliver a number of scientifically very interesting secondary data products such as Vegetation Chlorophyll Fluorescence (VCF) [3].

The envisaged ground pixel size is 2x2 km², which is required in order to disentangle natural and anthropogenic CO2 sources and sinks and to capture important emission targets such as coal fired power plants. The goal is to obtain global coverage within 6 days (500 km swath width).

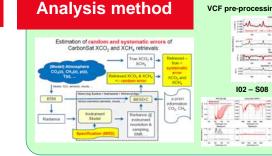
Study goal & approach

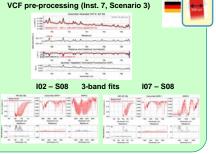
CarbonSat is currently being optimized. For example, it has been identified that especially the required high spectral resolution in the NIR (around 0.76 µm) and SWIR-2 (around 2 µm) bands are major drivers for the instrument design and related costs.

In this ongoing study it is being investigated if the spectral resolution can be relaxed by more than a factor 2 without degrading the quality of the XCO₂ and XCH₄ data products.

To investigate this we have performed simulated retrievals focussing on systematic XCO₂ retrieval errors caused by aerosols, cirrus clouds and Vegetation Chlorophyll Fluorescence (VCF).

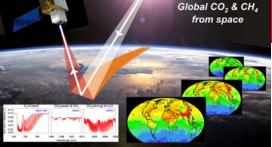
Preliminary conclusions


Our simulations indicate that the spectral resolution can be relaxed by roughly a factor of two in the NIR and SWIR-2 bands.


For compensation this requires an extension of the spectral ranges covered by the NIR and SWIR-2 bands and somewhat higher signal-tonoise ratios (SNR). Using these optimized parameters it appears that the quality of the XCO₂, XCH₄ and VCF data products can even be improved.

Acknowledgements

This study has received funding from ESA/ESTEC (contract No 4000105676/12/NL/AF), Wirtschaftsförderung Bremen (WFB) and the State and the University of Bremen



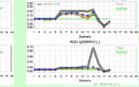
×



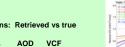
02

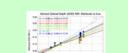
Instrument configurations

config. D	Bend	Apartan Distant	Reaction resolution Private	dL. phote.n	888 (Jar P(told) Jan] 894	C
- 81	1428. 51011 1010	796.773 1096.4679 2043-2090	01540. 8.2 8.17	78120 118101 48101	21.4645 21.4700 2.1.4700	SPECIAL Treaduate Treastrantic
-	Apii 5541 5555	1	00	10.00 1017	21#G45 21#100 21#100	MacHead Unit Junci, to Sani, 2 of Son, 750
	100 3001 1002		11		214(5 21470 21400	Research Spectral Association
	445	2.2	10.	2.2	21 #700	External 20H
-51				and without Villa		
27	48 101 017	747.275 10x0.x075 14x6.20x8	41 113 45	10-0 MU 10-0 MU 10-0 MU	21.400 21.470 21.470	Extended operited improve Nati



CarbonSat


Analysis results


Main results:

XCO₂ and XCH, bias & precision A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO *********** Cirrus: Cloud Optical Depth (COD) [-

Correlation	s: Retriev	ved vs true

Geophysical scenarios Scenarios: GHG profiles, VCF, aerosols, cirrus

No.	GHG vertical profiles	VCF	Aerosol type	Aerosol	Cirrus
1	1 (~const.)	1	1 (cleari)	1	1 (COD 0.05 / 10)
2	2 (mid-lat.sum)	1	1	1	1
3	2	2 (+2.9)	1	1	1
-4	1	2	3	1	1
- 5	2	3 (x1.2)	1	1	1
6	2	3	1	2 (x2.0)	· 1
7	2	3	1	2	2 (0.1)
8.	2	3	11	2	2 (0.1) 3 (0.2) 4 (0.2 / 8 km)
9	2	3	1	2	4 (0.2 / 8 km)
10	2	3	2 (avg.)	2	4
11	2	3	(hulloq) C	2	4
12	2	3	4 (desert)	3(x1.5) 4(x0.5)	5 (0.02 / 12 km
13	2	4 (x0.5)	4	4 (#0.5)	5
14	2	1	1	5 (x0.2)	1
62		1	11	4	6 (7 km) dy. "1" refers to the

Selected references

[1] Bovensmann, H. Buchwitz, M., Burrows, J. P., Reuter, M., et al., A remote sensing technique for global monitoring of power plant CO2 emissions from spece and related applications, Atmos. Meas. Tech., 3, 781-811, 2010.

[2] Velazco, V. A., M. Buchwitz, H. Bovensmann, M. Reuter, et al., Towards space based verification of CO₂ emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation, Atmos. Meas. Tech., 4, 2809-2822, 2011.

[3] Frankenberg, O'Dell, C, Guanter, L., and McDuffie, J., Chlorophyll fluorescence remote sensing from space in scattering atmospheres; Implications for its retrieval and interferences with atmospheric CO₂ retrievals, Atmos, Meas, Tech, Discuss., 5 2487-2527, 2012

www.iup.uni-bremen.de/carbonsat

Contact: Michael.Buchwitz@iup.physik.uni-bremen.de