

New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Solute Transport, and Various Biogeochemical Processes in Soils

Jirka Šimůnek¹

Miroslav Šejna², Diederik Jacques³, Günter Langergraber⁴, Scott Bradford⁵, and Rien van Genuchten⁶

¹Department of Environmental Sciences, University of California, Riverside, CA ²PC-Progress, Ltd., Prague, Czech Republic ³Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium ⁴University of Natural Resources and Life Sciences, Vienna (BOKU University), Austria ⁵US Salinity Laboratory, USDA, ARS, Riverside, CA, USA ⁶Federal University of Rio de Janeiro, Brazil

HYDRUS (1D/2D/3D)

Software for Simulating Water Flow and Solute Transport in One/Two/Three -Dimensional Variably-Saturated Soils Using Numerical Solutions

HYDRUS and its Modules

• **HYDRUS** + **PHREEQC** = HP1/2/3(hydrological + biogeochemical processes) ♦ HYDRUS + UNSATCHEM (hydrological + CO₂ + major ion processes) HYDRUS + Wetland (CW2D/CWM1) (biogeochem processes in constructed wetlands) ♦ HYDRUS + C-Ride (colloid-facilitated solute transport) ♦ HYDRUS + DualPerm (preferential water flow and solute transport)

HP1/2/3 (HYDRUS+PHREEQC)

Simulating water flow, transport and biogeochemical reactions in environmental soil quality problems

A Coupled Numerical Code for Variably Saturated Water Flow, Solute Transport and BioGeoChemistry in Soil Systems

Flow and transport model HYDRUS-1D 4.0 HYDRUS (2D/3D) 2.x

Biogeochemical model PHREEQC-2.4

HP1/2/3 (HYDRUS+PHREEQC)

HYDRUS-1D or HYDRUS (2D/3D):

- Variably-Saturated Water Flow
- Solute Transport
- Heat Transport
- Gas Transport
- Root Water Uptake

PHREEQC [Parkhurst and Appelo, 1999]:

- **Available Chemical Reactions:**
- Aqueous Complexation
- Redox Reactions
- Ion Exchange (Gains-Thomas)
- Surface Complexation (diffuse double-layer model and nonelectrostatic surface complexation model)
- Precipitation/Dissolution
- Chemical Kinetics
- Biological Reactions

HYDRUS GUI for HP1/2/3

(2)	Path to Folder with Thermodynamic Databases C:\ussl\HYDRUS3D 2.0\ThermodynamicDB\PHREEQC.DAT Browse				
4) (2) (3) (4) (alinity (5) (5) (3)	Component Presets 1 Total_0 2 Total_0 3 Na 4 K 5 Ca 6 Cl 7 N(5) Boundary Conditions In Concentrations In Concentrations	<u>H</u> elp			

Cu(1)

CC ①

HYDRUS GUI for HP1/2/3

Four text editors to define the geochemical model, required output, and solution compositions

۲

HP1 - Additions to Thermodynamic Database	X	The Y-Goonemical Place
Hadd new thermodynamic data - This block will not be overwritten by HP1		#Define geochemical model #This block will not be overwritten by HP1
SOLUTION_MASTER_SPECIES		
SOLUTION_SPECIES	HP1 - Definitions of Solution Compositions	equilibrium phases 1-101
PHASES	#This block will not be overwritten by HP1 #Definition of the solution compositions - initial and boundary	(y) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x
EXCHANGE_MASTER_SPECIES	solution 1001	
EXCHANGE_SPECIES	equilibrium phases 1001	
SURFACE_MASTER_SPECIES	gypsum calcite	
SURFACE_SPECIES	02(g) -0.68 save solution 1001	
RATES	end	
	solution 3001 pH 7 charge	
0	C1 2 Ca 1	Add: Exchange Surface Eguilibrium Phases Kinetics OK Cancel
	0(0) 1 02(g) -0.68 C(4) 1 C02(g) -3.5	
	0	K Cancel

Transport and Cation Exchange Heavy Metals

Major ions (Ca, Na, Al, Cl) and Heavy Metals (Zn, Pb, Cd)

8-cm column is initially contaminated with heavy metals (in equilibrium with the cation exchanger). The column is then flushed with a solution (CaCl₂) without heavy metals.

(C) (D)

U-Transport in Agricultural Field Soils

Aqueous speciation reactions
 C, Ca, Cl, F, H, K, Mg, N(5), Na, O(0), O(-2), P, S(6), U(6)

Multi-site cation exchange reactions

- Related to amount of organic matter
- Increases with increasing pH
- UO₂²⁺ adsorbs

Surface complexation reactions

- Specific binding to charged surfaces (≡FeOH)
- Related to amount of Fe-oxides

Jacques et al., VZJ, 2008.

HP2 – Reclamation of a Sodic Soil

Uranium Transport from Mill Tailing Pile

HP1 Examples

- Transport of Heavy Metals (Zn²⁺, Pb²⁺, and Cd²⁺) subject to a multiple pH-dependent Cation Exchange
- Transport and mineral dissolution of Amorphous SiO₂ and Gibbsite
- Infiltration of a Hyperalkaline Solution in a clay sample (kinetic precipitation-dissolution of kaolinite, illite, quartz, calcite, dolomite, gypsum, hydrotalcite, and sepiolite)
- Kinetic biodegradation of NTA (biomass, cobalt)
- Long-term Uranium transport following mineral phosphorus fertilization (pH-dependent surface complexation and cation exchange)
- Transport of Explosives, such as TNT and RDX
- Property Changes (porosity/conductivity) due to precipitation/ dissolution reactions

HYDRUS and its Modules

- HYDRUS + PHREEQC = HP1/2/3 (hydrological + biogeochemical processes)
- HYDRUS + UNSATCHEM (hydrological + CO₂ + geochemical processes)
- HYDRUS + Wetland (CW2D/CWM1) (processes in constructed wetlands)
- HYDRUS + C-Ride (colloid-facilitated solute transport)
- HYDRUS + DualPerm (preferential water flow and solute transport)

HYDRUS + UNSATCHEM

HYDRUS and HYDRUS (2D/3D)

- Variably-Saturated Water Flow
- Solute Transport
- Heat Transport
- Root Water Uptake
- UNSATCHEM (Šimůnek et al., 1996)
 - Carbon Dioxide Transport
 - Major Ion Chemistry
 - Cation Exchange
 - Precipitation-Dissolution (instantaneous and kinetic)
 - Aqueous Complexation

UNSATCHEM Module

1	Aqueous Components	7	Ca ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ , SO ₄ ²⁻ , Cl ⁻ , NO ₃ ⁻
2	Complexed Species	10	CaCO ₃ °, CaHCO ₃ ⁺ , CaSO ₄ °, MgCO ₃ °, MgHCO ₃ ⁺ , MgSO ₄ °, NaCO ₃ ⁻ , NaHCO ₃ °, NaSO ₄ ⁻ , KSO ₄ ⁻
3	Precipitated Species	6	$\begin{array}{c} CaCO_{3}, CaSO_{4} \cdot 2H_{2}O, CaMg(CO_{3})_{2}, \\ MgCO_{3} \cdot 3H_{2}O, Mg_{5}(CO_{3})_{4}(OH)_{2} \cdot 4H_{2}O, \\ Mg_{2}Si_{3}O_{7.5}(OH) \cdot 3H_{2}O \end{array}$
4	Sorbed Species (exchangeable)	4	XCa, XMg, XNa, XK
5	CO ₂ -H ₂ O Species	7	$P_{\rm CO2}, {\rm H}_2{\rm CO}_3^{*}, {\rm CO}_3^{2-}, {\rm HCO}_3^{-}, {\rm H}^+, {\rm OH}^-, {\rm H}_2{\rm O}$
6	Silica Species	3	H ₄ SiO ₄ , H ₃ SiO ₄ ⁻ , H ₂ SiO ₄ ⁻²⁻

Kinetic reactions: calcite precipitation/dissolution, dolomite dissolution Activity coefficients: extended Debye-Hückel equations, Pitzer expressions

UNSATCHEM - Lysimeter Study

Gonçalves, M. C., J. Šimůnek, T. B. Ramos, J. C. Martins, M. J. Neves, and F. P. Pires, Multicomponent solute transport in soil lysimeters irrigated with waters of different quality, *Water Resources Research*, 42, 17 pp., 2006.
Ramos, T. B., J. Šimůnek, M. C. Gonçalves, J. C. Martins, A. Prazeres, N. L. Castanheira, and L. S. Pereira, Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters, *J. of Hydrology*, 407(1-4), 129-144, 2011.

UNSATCHEM-2D Module

🖮 🚟 Results - Graphical Display **Major Ion Chemistry Module** 000 Pressure Head 000 Water Content 👊 Velocity Na⁺ XCa²⁺ 🔍 Velocity Vectors 000 Calcium 👊 Magnesium ӎ Sodium ӎ Potassium 👊 Alkalinity 000 Sulfate 0 Chloride 000 Tracer 👊 Sorbed Calcium X Solute Composition 💵 🔍 Sorbed Magnesium Solution Composition 👊 Sorbed Sodium 0K. 000 Sorbed Potassium Sol Ca Mg Na Alk SO4 CI Tracer Cancel 32.6 4.8 0.4 32 1 0 0 5 👊 Calcite <u>H</u>elp 2 0.2 0 4.8 0 0.4 0 4.6 🔍 Gypsum 👊 Dolomite ӎ Nesquohonite Adsorption Concentrations ӎ Hydromagnesite Na Ads Ca Mg 👊 Sepiolite 1 0.5 0 9.5 0 **Precipitated Concentrations** HydroMg Gypsum Dolomite Prec Calcite Nesgoh Sepiolite <u>N</u>ext ... Previous

Šimůnek, J., and D. L. Suarez, Two-dimensional transport model for variably saturated porous media with major ion chemistry, *Water Resources Research*, *30*(4), 1115-1133, 1994.

(C) (D)

HYDRUS and its Modules

- HYDRUS + PHREEQC = HP1/2/3 (hydrological + biogeochemical processes)
 HYDRUS + UNSATCHEM (hydrological + CO₂ + geochemical processes)
- HYDRUS + Wetland (CW2D/CWM1) (processes in constructed wetlands)
- HYDRUS + C-Ride (colloid-facilitated solute transport)
- HYDRUS + DualPerm (preferential water flow and solute transport)

Wetland Module

Constructed Wetlands (CWs) or wetland treatment systems

- designed to improve water quality
- use the same processes that occur in natural wetlands but have the flexibility of being constructed
- effective in treating organic matter, nitrogen, phosphorus, and additionally for decreasing the concentrations of heavy metals, organic chemicals, and pathogens
- **CW2D : aerobic and anoxic processes for organic matter, nitrogen and phosphorus** (Langergraber and Šimůnek, 2005)
- **CWM1:** aerobic, anoxic and anaerobic processes for organic matter, nitrogen and sulphur (Langergraber et al., 2005)

Subsurface Vertical (CW2D) and Horizontal (CWM1) flow constructed

Wetland Modules: Components

CW2D : aerobic and anoxic processes for organic matter, nitrogen and phosphorus CWM1: aerobic, anoxic and anaerobic processes for organic matter, nitrogen and sulphur Components:

CW2D (Langergraber and Šimůnek, 2005)	CWMI (Langergraber et al., 2009b)		
Organic matter, nitrogen, phosphorus	Organic matter, nitrogen, sulphur		
Organic matter, nitrogen, phosphorus CW2D components 1. SO: Dissolved oxygen, O2. 2. CR: Readily biodegradable soluble COD. 3. CS: Slowly biodegradable soluble COD. 4. CI: Inert soluble COD. 5. XH: Heterotrophic bacteria 6. XANs: Autotrophic ammonia oxidizing bacteria (Nitrosomonas spp.) 7. XANb: Autotrophic nitrite oxidizing bacteria	Organic matter, nitrogen, sulphur Soluble components 1. SO: Dissolved oxygen, O2. 2. SF: Fermentable, readily biodegradable soluble COD. 3. SA: Fermentation products as acetate. 4. SI: Inert soluble COD. 5. SNH: Ammonium and ammonia nitrogen. 6. SNO: Nitrate and nitrite nitrogen. 7. SSO4: Sulphate sulphur.		
 (Nitrobacter spp.) 8. NH4N: Ammonium and ammonia nitrogen. 9. NO2N: Nitrite nitrogen. 10. NO3N: Nitrate nitrogen. 11. N2: Elemental nitrogen. 12. PO4P: Phosphate phosphorus Organic nitrogen and organic phosphorus are modeled as part of the COD. Nitrification is modeled as a two-step process. Bacteria are assumed to be immobile.	 SH2S: Dihydrogensulphide sulphur. Particulate components XS: Slowly biodegradable particulate COD. XI: Inert particulate COD. XH: Heterotrophic bacteria. XA: Autotrophic nitrifying bacteria. XFB: Fermenting bacteria. XAMB: Acetotrophic methanogenic bacteria. XASRB: Acetotrophic sulphate reducing bacteria. XSOB: Sulphide oxidizing bacteria. 	 	
It is generally assumed that all components except bacteria are soluble.	Organic nitrogen and organic phosphorus are modeled as part of the COD.		

Langergraber, G., and J. Šimůnek, The Multi-component Reactive Transport Module CW2D for Constructed Wetlands for the HYDRUS Software Package, Manual – Version 1.0, *HYDRUS Software Series 2*, Department of Environmental Sciences, University of California Riverside, Riverside, CA, 72 pp., 2006.

Langergraber, G., D. Rousseau, J. Garcia, and J. Mean, CWM1 - A general model to describe biokinetic processes in subsurface flow constructed wetlands, *Water Science Technology*, 59(9), 1687-1697, 2009.

Wetland Modules: Processes

under anoxic conditions.

Nitrosomonas XANs

17. Lysis of XSOB.

Heterotrophic Organisms XH

HYDRUS and its Modules

- HYDRUS + PHREEQC = HP1/2/3 (hydrological + biogeochemical processes)
- HYDRUS + UNSATCHEM
 (hydrological + CO₂ + geochemical processes)
- HYDRUS + Wetland (CW2D/CWM1) (processes in constructed wetlands)
- HYDRUS + C-Ride (colloid-facilitated solute transport)
- HYDRUS + DualPerm (preferential water flow and solute transport)

- Many contaminants should be relatively immobile in the subsurface since under normal conditions they are strongly sorbed to soil
- They can also sorb to colloids which often move at rates similar or faster as non-sorbing tracers
- Experimental evidence exists that many contaminants are transported not only in a dissolved state by water, but also sorbed to moving colloids.
- Examples: heavy metals, radionuclides, pesticides, viruses, pharmaceuticals, hormones, and other contaminants

HYDRUS + C-Ride

HYDRUS and HYDRUS (2D/3D)

- Variably-Saturated Water Flow
- Solute Transport
- Heat Transport
- Root Water Uptake
- ◆ C-Ride (Šimůnek et al., 2006)
 - Particle Transport
 - colloids, bacteria, viruses, nanoparticles
 - attachment/detachment, straining, blocking
 - Colloid-Facilitated Solute Transport
 - transport of solutes attached to particles

Colloid, Virus, and Bacteria Transport

Mass Balance of Total Contaminant:

$$\frac{\partial \theta C}{\partial t} + \rho \frac{\partial S_e}{\partial t} + \rho \frac{\partial S_k}{\partial t} + \frac{\partial \theta_w C_c S_{mc}}{\partial t} + \rho \frac{\partial S_c S_{ic}}{\partial t} + \frac{\partial A_{aw} \Gamma_c S_{ac}}{\partial t}$$
$$= \frac{\partial}{\partial x} \left(\theta D \frac{\partial C}{\partial x} \right) - \frac{\partial q C}{\partial x} + \frac{\partial}{\partial x} \left(\theta_w S_{mc} D_c \frac{\partial C_c}{\partial x} \right) - \frac{\partial q_c C_c S_{mc}}{\partial x} + R$$

Left-hand side sums the Mass of Contaminant:

- in the liquid phase
- sorbed instantaneously and kinetically to the solid phase
- sorbed to mobile and immobile (attached to solid phase or airwater interface) colloids

Right-hand side considers various Spatial Mass Fluxes

- dispersion and advective transport of the dissolved contaminant
- dispersion and advective transport of contaminant sorbed to mobile colloids

and Transformation/Reaction (e.g., degradation).

System of coupled equations (solved numerically):

- a) Five Partial Differential Equations
 - total mass of contaminant
 - mass of contaminant sorbed kinetically to solid phase
 - mass of contaminant sorbed to mobile colloids
 - mass of contaminant sorbed to attached colloids
 - mass of contaminant sorbed to strained colloids
- b) One Algebraic Equation
 - mass of contaminant sorbed instantaneously to solid phase (adsorption isotherm)

Breakthrough curves for colloids (black line), solute sorbed to colloids (blue line), and solute (red line):

Left: solute and colloids are applied independently

Right: solute is attached initially to colloids

The **Retardation Factor** for colloids is equal **1** and for solute to **4** Unit input concentrations.

HYDRUS and its Modules

- HYDRUS + PHREEQC = HP1/2/3 (hydrological + biogeochemical processes)
 HYDRUS + UNSATCHEM (hydrological + CO₂ + geochemical processes)
 HYDRUS + Wetland (CW2D/CWM1) (processes in constructed wetlands)
 HYDRUS + C-Hitch
 - (colloid-facilitated solute transport)
- HYDRUS + DualPerm (preferential water flow and solute transport)

Preferential Flow and Transport

Fractured Rock

Macroporous Soil

The DualPerm Module

Physical Nonequilibrium Solute Transport Models in DualPerm

a) Uniform Flow
b) Mobile-Immobile Water
c) Dual-Porosity (Šimůnek et al., 2003)
d) Dual-Permeability (Gerke and van Genuchten, 1993)

Chemical Nonequilibrium Solute Transport Models in DualPerm

- a) One-Site Kinetic Model
- b) **Two-Site Model** (kinetic and instantaneous sorption)
- c) Two Kinetic Sites Model

(particle transport, e.g., colloids, viruses, bacteria)

- d) Dual-Porosity with One Kinetic Site Model
- e) Dual-permeability with Two-Site Model

Nonequilibrium Models in the HYDRUS GUI

Variably-Saturated Water Flow

Solute Transport

Soil Hydraulic Model	Solute Transport		
Hydraulic Model Single Porosity Models Image: Single Porosity Models	Time Weighting Scheme Space Weighting Scheme © Explicit Scheme © Galerkin Finite Elements © Qrank-Nicholson Scheme © Upstream Weighting FE © Implicit Scheme © GFE with Artificial Dispersion Mass Units: mmol Stability Criterion: 2 Dependence on Environmental Factors Next Temperature Dependence of Transport and Reaction Parameters Help		
Dual-porosity (Durner, dual van Genuchten - Mualem) Dual-porosity (mobile-immobile, water c. mass transfer) Dual-porosity (mobile-immobile, head mass transfer) == Models below are recommended only for experienced users == O Dual-permeability (Kinematic wave gquation) O Dual-permeability (Gerke and van Genuchten, 1993)	Nonequilibrium Solute Transport Models Equilibrium Model One-site sorption model (Chemical Nonequilbrium) Two-site sorption model (Chemical Nonequilbrium) Two-site sorption model (Chemical Nonequilbrium) Two Kinetic Sites Model (Particle Transport Using Attachment/Detachment, Chemical Nonequilbrium) Two Kinetic Sites Model (Based on Filtration Theory, Chemical Nonequilbrium) Dual-Porosity (Mobile-Immobile Water) Model (Physical Nonequilibrium) Dual-Porosity (Mobile-Immobile Water) Model (Physical Nonequilibrium)		
 C Look-up Tables Hysteresis I No hysteresis 	 Nonequilibrium) Dual-Permeability Model (Physical Nonequilibrium) Dual-Permeability Model with either Immobile Water in the Matrix or Kinetic Sorption (Physical and Chemical Nonequilibrium) 		
Hysteresis in retention curve Hysteresis in retention curve and conductivity Hysteresis in retention curve (no pumping, Bob Lenhard) C Initially drying curve C Initially wetting curve	Iteration Criteria - Only for Nonlinear Problems Image: Concentration Tolerance 0 Absolute Concentration Tolerance 0 Belative Concentratin Tolerance 1 Maximum Number of Iteration Pulse Duration: 0.08		

The DualPerm Module

Water flow and Solute Transport in Dual-Permeability Variably-Saturated Porous Media

Pressure head profiles for the matrix (left), isotropic fracture, and fracture with $K_x^A/K_z^A=10$, and fracture with $K_x^A/K_z^A=0.1$ (right).

CC ①

HYDRUS and its Future Modules?

- HYDRUS + Overland Flow (surface runoff and overland flow)
- HYDRUS + Global Optimization (genetic algorithm, AMALGAM, ...)
- HYDRUS + MODFLOW
 (hydrological processes at a large scale)
- HYDRUS + Soil Mechanical Stresses

 (effects of hydrological processes on slope stability)
- HYDRUS + Freezing, Meteo (atmosphere)...

Questions and Suggestions?

Thank you for your attention

