

An improved and more flexible representation of water stress in coupled A-gs models;

Implications for simulated land surface fluxes and variables at various spatiotemporal scales

Gregorio Egea, **Anne Verhoef**, Pier Luigi Vidale, Emily Black and Catherine Van den Hoof

Based on: Egea, G., Verhoef, A. and Vidale, P. L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models. Agricultural and Forest Meteorology, 151: 1370-1384.

Multiplicative models (Jarvis, 1976)

 $g_s = g_{s,max} f(Q) f(T) f(D) f(\Psi_l) f(C_a)$

Coupled photosynthesis-stomatal conductance models (A-g_s) (Ball et al., 1987)

 $g_s = g_0 + m \operatorname{A} f(C_s) f(D)$

Mechanistic models (i.e. Buckley et al., 2003) $g_{s} = \frac{g_{m}(\alpha - \gamma)}{\alpha + K_{g}}$ $g_{m} = \frac{\psi_{s} + \pi_{e}}{RD_{s}} \quad \alpha = \beta\tau - M + \rho \quad k_{g} = \frac{1}{\chi RD_{s}} \quad \gamma = \frac{\pi_{e} - \pi_{a}}{\pi_{e} + \psi_{s}} + \rho$ EGU Assembly, 22-27 April 2012

Coupled photosynthesis-stomatal conductance models (A-g_s) (Ball et al., 1987) $g_s = g_0 + m A f(C_s) f(D)$

- Models photosynthesis in a relatively mechanistic way.
- Built on physiological hypotheses.
- Good compromise between ease of use and predictive accuracy.

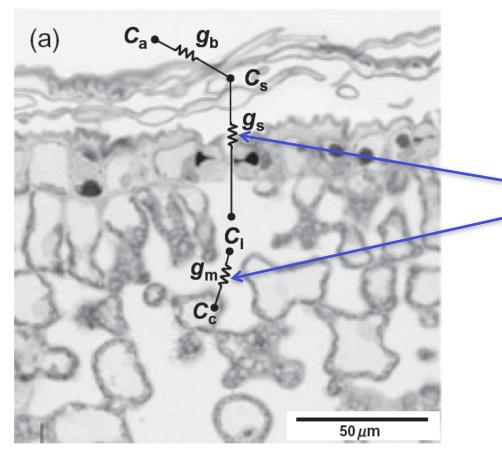
DRAWBACK

The **original** A-g_s models is that they did not take into account the **response to water stress**.

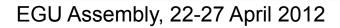
¿How did scientists overcome this limitation?

1.By applying a **water stress index** to the **<u>slope</u>** of the A-g_s relationship:

$$g_s = g_0 + m' A f(C_s) f(vpd)$$


 $m' = m f(\theta)$

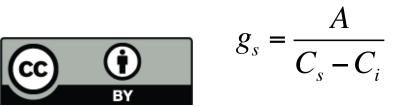
2. By applying a water stress index to the photosynthetic capacity.


HOW DOES WATER STRESS LIMIT CO₂ ASSIMILATION?

Flexas et al. (2008)

Water stress affects CO_2 concentration at the chloroplast level C_c by:

- a. Reducing g_s (SCL)
- b. Reducing mesophyll conductance to CO₂ diffusion (g_m) (MCL)
- BL: Water stress affects the **biochemical capacity** by:
- a. Reducing V_{cmax}
- b. Reducing J_{max}


Leaf gas exchange in **land surface models** (LSM) such as **JULES** is based on the works by Collatz et al. (1991; 1992) and Jacobs et al. (1996). See also Calvet et al. (2004)

1. C_i is computed as (Jacobs et al., 1996)

$$\frac{C_i - \Gamma}{C_s - \Gamma} = f_o \left(1 - \frac{D_s}{D_{\text{max}}} \right) \qquad f_0 \text{ and } D_{\text{max}} \text{ are empirical parameters}$$

2. Once C_i is known, net photosynthesis (**A**) is computed independently (Collatz et al., 1991; 1992).

3. \mathbf{g}_{s} is finally computed from \mathbf{C}_{i} and \mathbf{A} as:

JULES applies a **soil-moisture dependent water stress index** to the potential (non-stressed) leaf photosynthesis rate (A_p) :

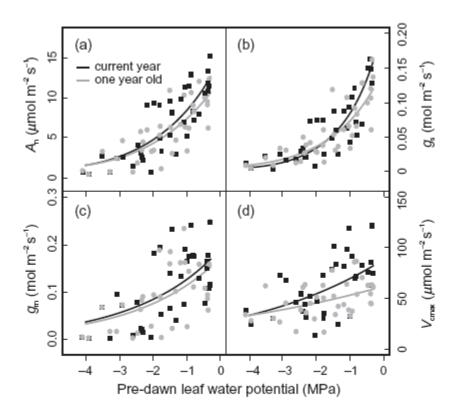
 $A = A_p \beta$

where β is:

$$\beta = \begin{cases} 1 & \text{for } \theta \ge \theta_{c} \\ \frac{\theta - \theta_{w}}{\theta_{c} - \theta_{w}} & \text{for } \theta_{w} < \theta < \theta_{c} \\ 0 & \text{for } \theta \le \theta_{w} \end{cases}$$

 θ_w = soil moisture content at PWP θ_c = critical soil moisture content

MODELS SUCH AS JULES NEGLECT DIFFUSIONAL LIMITATIONS (I.E. STOMATAL AND/OR MESOPHYLL CONDUCTANCE LIMITATIONS)



IMPLICATIONS OF INCLUDING DIFFUSIONAL LIMITATIONS OF PHOTOSYNTHESIS UNDER DROUGHT

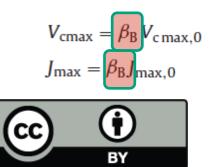
The following water stress index was used:

$$\beta_{i} = \begin{cases} 1 & \theta \geq \theta_{c} \\ \left[\frac{\theta - \theta_{w}}{\theta_{c} - \theta_{w}} \right]^{q_{j}} & \theta < \theta_{c} \\ 0 & \theta \leq \theta_{w} \end{cases}$$

The exponent q_j is a measure of the **nonlinearity of the effects of soil moisture deficit** on the limiting mechanisms of photosynthesis.

Misson et al. (2010)

IMPLICATIONS OF INCLUDING DIFFUSIONAL LIMITATIONS OF PHOTOSYNTHESIS UNDER DROUGHT


$$\beta_{i} = \begin{cases} 1 & \theta \geq \theta_{c} \\ \left[\frac{\theta - \theta_{w}}{\theta_{c} - \theta_{w}} \right]^{q_{j}} & \theta < \theta_{c} \\ 0 & \theta \leq \theta_{w} \end{cases}$$

- $q_s \rightarrow$ Limitation strength of g_s
- $q_M \rightarrow$ Limitation strength of g_m
- $q_B \rightarrow$ Limitation strength of biochemistry

$$g_{\rm s} = g_0 + \frac{\beta_{\rm s}}{(C_{\rm s} - \Gamma)(1 + (D_{\rm s}/D^*))}$$

Stomatal conductance limitations (SCL)

Mesophyll conductance limitations (MCL)

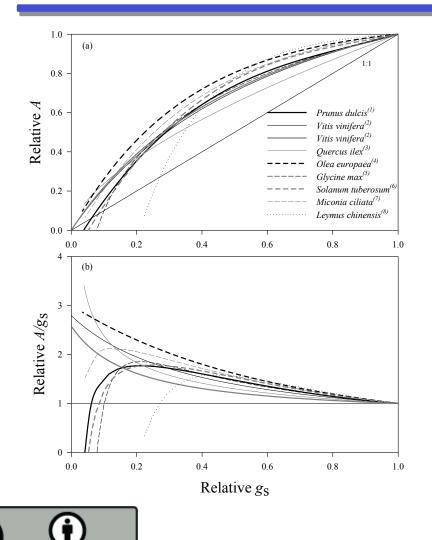
Biochemical limitations (BL)

IMPLICATIONS OF INCLUDING DIFFUSIONAL LIMITATIONS OF PHOTOSYNTHESIS UNDER DROUGHT

Sensitivity analyses were performed to assess six different configurations of water stress on leaf-level photosynthesis and stomatal conductance:

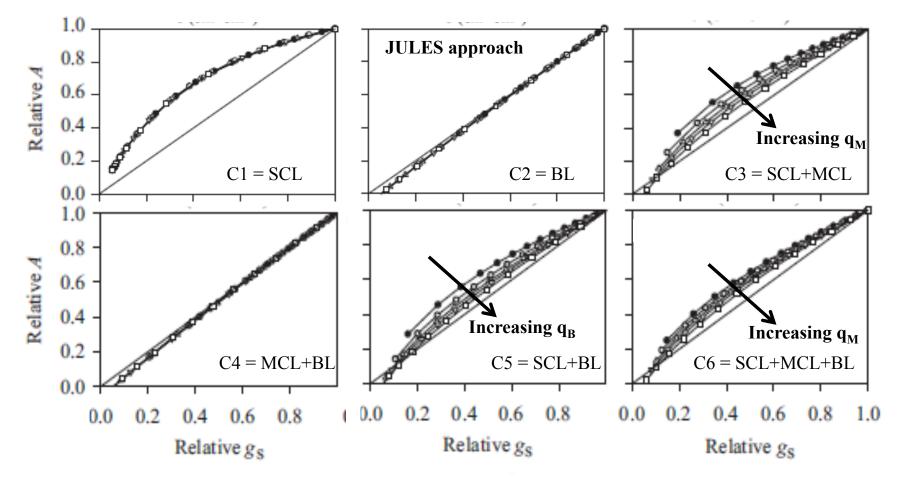
> C1: Only SCL C2: Only BL C3: SCL+MCL C4: MCL+BL C5: SCL+BL C6: SCL+MCL+BL

where


- SCL = Stomatal conductance limitations
- MCL= Mesophyll conductance limitations
- **BL= Biochemical limitations**

BY

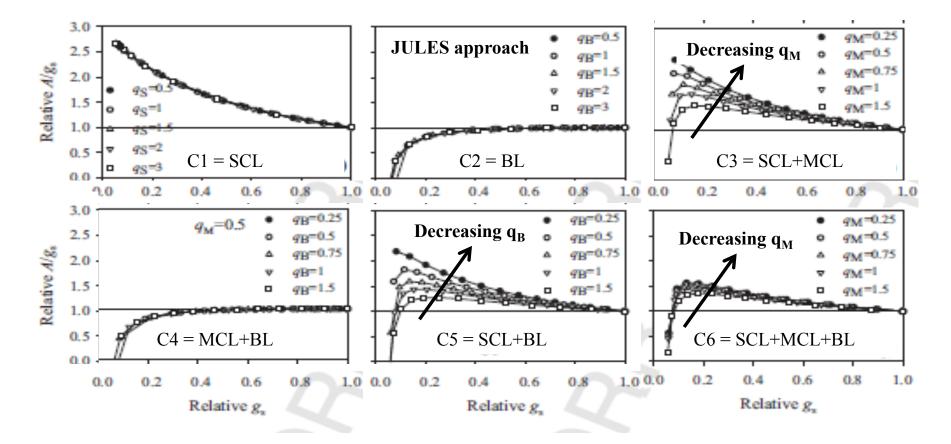
IMPLICATIONS OF INCLUDING DIFFUSIONAL LIMITATIONS OF PHOTOSYNTHESIS UNDER DROUGHT



Results of a literature survey to analyze the relationships A vs g_s and $A/g_s vs g_s$ in response to water stress.

Egea, Verhoef & Vidale (2011; AFM 151)

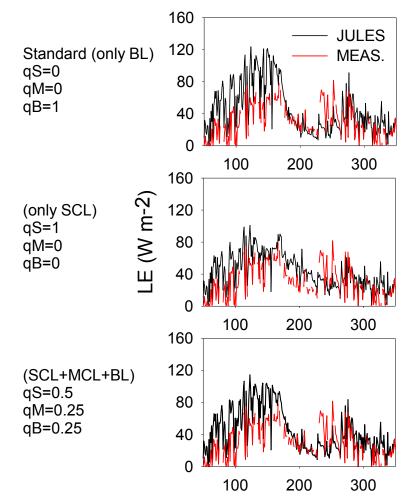
Relationship A vs g_s in response to soil water deficit



Egea, Verhoef & Vidale (2011; AFM 151)

Reading SENSITIVITY ANALYSES

Relationship A/g_s vs g_s in response to soil water deficit

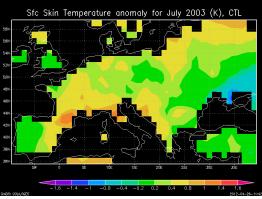

Egea, Verhoef & Vidale (2011; AFM 151)

Off-line JULES runs for FLUXNET sites

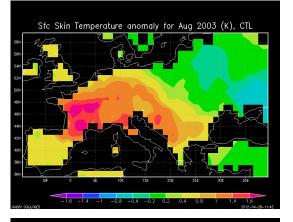
Year 2003

Puechabon site (*Quercus ilex, Southern France*)

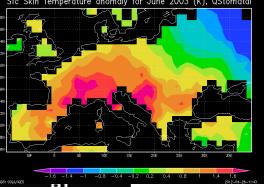
Implementation of the Egea et al. 2011 scheme into climate models


Here JULES is used offline, driven with observed meteorology (Princeton dataset) Focus on the **2003 European heat wave**, coinciding with significant seasonal anomalies in precipitation \rightarrow soil moisture deficit \rightarrow surface temperature.

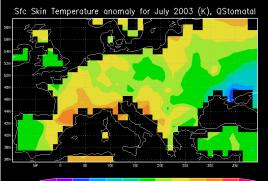
<u>QUESTION</u>: how does vegetation stress depend on the application of the β factor on the model's: (<u>BL</u>: q_B =1.0, q_M =0.0, q_S =0.0) or biochemistry stomatal conductance (SCL: q_B =0.0, q_M =0.0, q_S =1.0)


Sfc Skin Temperature anomaly for June 2003 (K), CTL В

Jun 2003

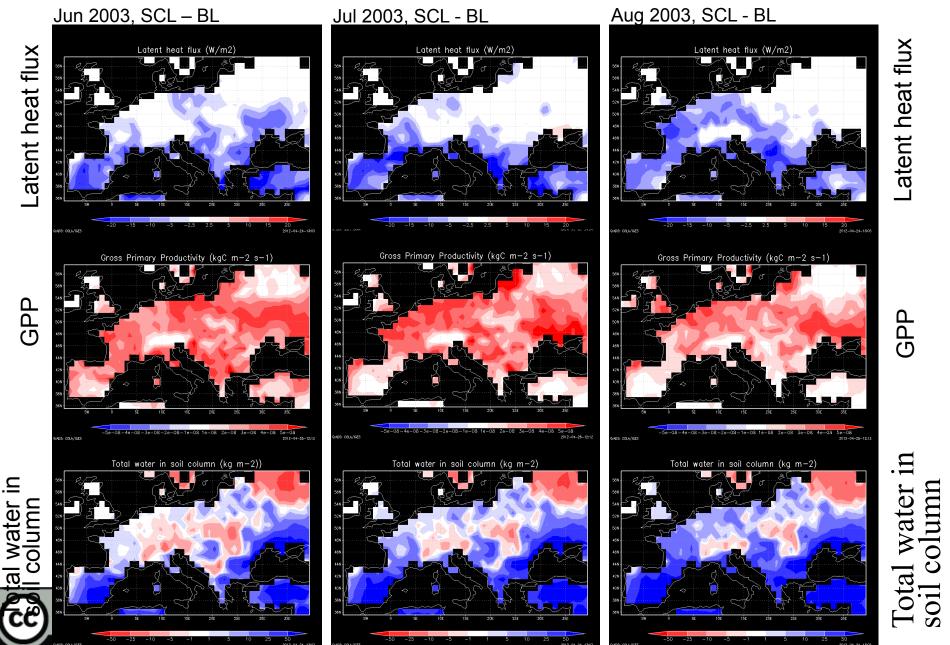

Jul 2003

Aug 2003




Sfc Skin Temperature anomaly for June 2003 (K), QStomatal

SCL


CC

Ы

Significant impacts on the surface energy balance, GPP and available soil water for SCL combination of water stress limitations: $q_B = 0.0$, $q_M = 0.0$, $q_S = 1.0$

ສ

Latent heat flux

GPP

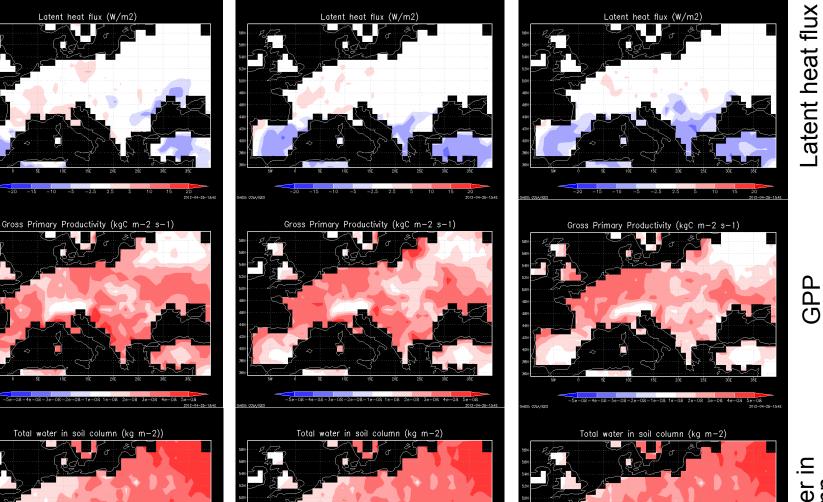
Significant impacts on the surface energy balance, GPP and available soil water C6 combination (BL + MC + SCL) of water stress limitations: $q_B=0.25$, $q_M=0.25$, $q_S=0.5$ Aug 2003, C6 - BL

Jun 2003, C6 – BL

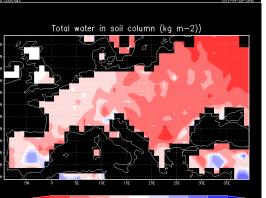
Latent heat flux (W/m2)

Latent heat flux

GPP


 \subseteq

al water column


ത

ćĕ

Jul 2003, C6 - BL

l water column Total soil c

-The combination of BOTH stomatal and non-stomatal limitations of photosynthesis is needed to adequately represent functional relationships between leaf-level photosynthetic traits in response to soil water deficit.

- Outputs of **land surface models** such as JULES are **highly sensitive** to the way plant water stress is modelled, in particularly under **strong drought** conditions

- This will have **implications** for weather forecasts, **climate change studies**, **water resource** management etc.

- We are currently testing the effect of the Egea et al. scheme for other key regions, e.g. **Sahel, Amazon**

-Next, we focus on **coupled runs with GCM**

