

<u>Abstract</u>

A deep subsurface CO₂ storage test will be performed through two newly constructed well at Heletz (Isreal). Flowing Fluid Electrical Conductivity (FFEC) logging is planned to be performed before the CO₂ injection to understand the hydraulic conductivity structure of the target injection aquifers (three sandstone layers). In this study, we present the result of the deign study of the FFEC logging procedure to be applied at the newly constructed wells for detail hydraulic information. We have further studied the possibility of using FFEC logging in the monitoring well to determine the relative flow rates and their possible time variation during CO_2 injection.

Background

Heletz area is located in the southern part of the Mediterranean Coastal Plain of Israel, about 7 km from the coastal line (the city of Ashkelon). In the frame of the MUSTANG project, two new wells at the vicinity of Well Heletz 18 (H-18) are being drilled and will be used for the study of the effects of CO₂ injection for geological storage. The target storage formation comprises three sandstone layers, having a cumulative thickness of ~10 meters, at a depth of 1600 m approximately. The approximate wellbore diameter is 8.5" (21.6 cm) within a resolution of ~10%. A complete background information such as porosity, permeability, aquifer thickness, hydraulic head, geometry of cap-rocks, salinity are necessary for the successful planning of the field injection or for modeling the flow and transport of injected CO₂ in the target formation. Although some of the preliminary hydraulic information are available for Heletz test site from previous geophysical logging and pumping tests, detailed information of hydraulic conductivity structure as a function of depth of the target layer of newly constructed well is needed.

Objectives

This poster presents results of a continuing study on the application of a fast method (Flowing Fluid Electrical Conductivity, FFEC) for characterization of hydraulic structure of reservoir layers used for CO₂ storage. This results are specifically on (1) the detailed design of FFEC testing procedure applicable to the proposed CO₂ injection test site at Heletz and (2) the feasibility of using FFEC logging to monitor the flow rates and their possible variations through individual conductive layers at the monitoring well during CO_2 injection.

Flowing FEC Method

Flowing Fluid Electric Conductivity (FEC) is fast way to determine the distribution of hydraulic connections over depth and internal heterogeneity of the well.

>Formation water of the well first replaced with deionized water by pumping from the bottom of the well.

≻Well water then pumped at constant flow rate from the top and EC probe moved up & down into the well.

>As formation water enters the well, FFEC profile as a function of depth obtained until steady state concentration reached. The BORE II code solves the oneadvection-diffusion dimensional equation for flow and transport along the well using the finitedifference method to estimate the hydraulic conductivity structure over well depth.

(From Doughty et al. 2005)

Flowing Fluid Electrical Conductivity Logging at the Heletz Site for Detailed Hydraulic Information for CO₂ injection

Prabhakar Sharma¹, Chin-Fu Tsang¹, Auli Niemi¹, Jacob Bensabat² and Fritjof Fagerlund¹ ¹Department of Earth Sciences, Uppsala University, Sweden and ²EWRE Ltd, Haifa, Israel

FFEC Logging Procedure

After considering well details, we arrive at the following design of field logging schedule at Heletz test site:

Activity Time		Measurement Time		Day	Description
Start	End	Start	End		
				Day 1	
8:00	8:30				Site preparation
8:30	11:00				Installing of EC logging too (tubing bottom at 1670 m fo
11:00	11:50				Installing of pump and tub sensor (at 250 m, below ant
					Continuous measurement o
12:00	14:30				Replacement of well bore w water and upper tubing fo Practice run
14:30					Stop injection and pumping
14:40		14:40	15:00		EC measurement (UP, for 20
	15:30	15:10	15:30		EC measurement (DOWN, for
15:40	16:20				Start Pumping at $Q_1 = 10 L/r$
15:40		15:40	16:00		EC measurement (UP, speed
	16:20	16:00	16:20		EC measurement (DOWN, s
16:30	7:55 (Day 2)				Replacement of well bore w water and upper tubing for
				Day 2	
8:00		8:00	8:40		EC measurement (UP and D
		8:40	9:00		
	10:00	8:40	10:00		EC measurement (Repeat al
10:20	15:00				Pumping at $Q_1 = 10 L/min$
10:20		10:20	10:40		EC measurement (Q ₁ =10 L/r
	11:00	10:40	11:00		EC measurement (Q ₁ =10 L/r
11:20		11:20	11:40		EC measurement (Q ₁ =10 L/r
	12:00	11:40	12:00		EC measurement (Q ₁ =10 L/r
12:20	15:00	12:20	15:00		Repeat 3 more times
16:30	7:55				Replacement of well bore w water and upper tubing for

Feasibility study of using FFEC logging to monitor flow rates during <u>CO₂ Injection</u>

We suggest that it may be possible to monitor the flow rates in the individual conductive layers of the storage aquifers at the monitoring well using FFEC logging method. The figure (below) shows the salinity change due to flow in formation water through the monitoring well at their corresponding conductive layers, due to CO₂ injection (3.5 tones/h) at the target well located at 50 m away from the monitoring well. The salinity is higher in the middle layers as it has the highest permeability.

Acknowledgement

This research has received funding from European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no 227286, as part of MUSTANG project.

- Is and tubing [Probe assembly A] for tap water injection r injection)
- ing [Probe assembly B] for extraction, and water level cipated lower water table level)
- water level
- ter with tap water, using bottom tubing for injecting tap extracting bore water at same rate (Q_{hore} = 30 L/min),
- 0 m, speed = 10 m/min, Q = 0) [For practice run] or 200 m, speed = 10 m/min, Q = 0) [For practice run] nin [For practice run]
- = 10 m/min, 1st Scan) [For practice run]
- peed = 10 m/min, 1st Scan) [For practice run] ater with tap water, using bottom tubing for injecting tap extracting bore water ($Q_{\text{bore}} = 30 \text{ L/min}$) (circulation 1)
- OWN, for 200 m, speed = 10 m/min, Q = 0) Break in logging pove 2 steps for 2 more times) Break in logging
- min, 1st Scan, UP) (speed = 10 m/min) for 200 m min, 1st Scan DOWN) (speed = 5 m/min) Break in logging nin, 2nd Scan, UP) (speed = 10 m/min)
- min, 2nd Scan, DOWN) (speed = 10 m/min) Break in logging
- with tap water, using bottom tubing for injecting tap xtracting bore water (Q_{bore} = 30 L/min) (circulation 2)

FFEC method can also be applicable to monitor the accelerated flow behavior via the most conductive aquifer as a function of time. The figure (below) shows an example of FFEC profile with enhanced salinity with time (i.e., flow rate through that layer) due to CO_2 injection.

The total salt concentration entered through formation water to the monitoring well (after complete replacement with deionized water during FFEC logging) increased linearly with time, however the rate of salt mass over time could be different for different conductive layer and they may also alter due to injected supercritical CO_2 with time (as shown in figure below).

Summary

> A complete design for conducting FFEC logging for detail hydraulic conductivity information have been presented for newly constructed well at Heletz site for CO_2 injection. > It is suggested that FFEC logging method may be useful for monitoring the flow rates and their possible variations through the different layers in the CO₂ storage aquifers during CO₂ injection. > The flow rates of the liquid phase through conductive layers can increase with time as more and more supercritical CO_2 (with lower density and viscosity) enters into these layers during injection.

References

Doughty, C., Takeuchi, S., Amano, K., Shimo, M., and Tsang, C.F. Application of Multirate Flowing Fluid Electric Conductivity Logging Method to Well DH-2, Tono Site, Japan, Water Resour. Res, 41, W10401, doi:10.1029/2004WR003708, 2005

