

Optimal exploitation of AMSR-E signals for improving soil moisture estimation through land data assimilation

1. Introduction

- Regional soil moisture can be estimated by assimilating satellite microwave brightness temperature into a land surface model (LSM). However, currently existing microwave signals are of different properties such as polarization, observing time, and microwave frequency, which have different sensitivities to soil moisture. It is necessary to find out the optimal ways of choosing these signals for assimilation. By using a dual-pass land data assimilation system (LDAS) [1], this study explores how to improve soil moisture estimation based on sensitivity analyses when assimilating AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) brightness temperatures.
- Analyzed are the effects of different polarizations (horizontal and vertical), satellite overpass times (nighttime and daytime), and different frequency (from 6.9 GHz to 36.5 GHz) combinations on the accuracy of soil moisture estimation by the LDAS. Results indicate that the vertical polarized nighttime signals are best for soil moisture estimation in current LDAS. And the land surface model (LSM) need to be further improved to make utilization of horizontal polarized and daytime signals. Finally a frequency combination-based ensemble method is proposed and proved to be robust in soil moisture estimate.

The dual-pass LDAS.

- The LDAS contains a land surface model (SiB2 [2]) to simulate near surface soil moisture, and a radiative transfer model (Q-h [3]) to calculate brightness temperature.
- A time split algorithm is adopted to calibrate timeinvariant model parameters in a relative long time window (~months) in pass 1, and optimize near-surface soil moisture in a short time window (~1 day) in pass 2.
- A soil wetness index is defined $(SWI = \frac{T_b(F1)}{T_h(F2)}$ [4]) to moisture information from microwave soil brightness temperature measurements.

First Author E-mail: zhaolong@itpcas.ac.cn

Fig. 2. Sketch of ADEOS II Mongolian Plateau Experiment for ground truth (AMPEX). CEOP archived AWS data at BTS, DGS, DRS, MGS and soil moisture data at all 12 ASSH and the four AWS.

• The ground truth as well as the forcing data are collected through CAMP-Mongolia reference site (Fig. 2; data available through: <u>http://www.ceop.net/</u>).

• This region is relative homogeneous and provide ideal test base for LDAS validation.

2. Design of experiment cases

Table 1. experiment cases design with respect to different polarizations, observing time, and frequency combinations of AMSR-E signals.

	Delevization	Overpass	Frequency combination (GHz)		
	Polarization	time	Lower	Higher	
t rl	V-pol	Nighttime	6.9	18.7	
	H-pol	Nighttime	6.9	18.7	
	V-pol	Daytime	6.9	18.7	
j	V-pol	Nighttime	Fi	Fj	

 Several cases are designed by choosing different signals (Table 1).

• In addition, supplement cases are designed to study the role of model parameters in soil moisture estimation in LDAS. In these cases the model parameters are set equal to the reference case calibrated ones ("control parameters").

- Long Zhao^{1,2}, Kun Yang¹, Jun Qin¹, and Yingying Chen¹ 1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, ITPCAS, Beijing 100085, China;
- 2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China

Table 2. statistics of LDAS performance and main model parameters in polarization study cases (<i>h</i> and <i>q</i> : surface roughness parameters).							
case	v-pol	h-pol	h-pol+ctrl para				
Performance indices							
R	0.81	0.81	0.83				
MBE	0.012	-0.026	-0.009				
RMSE	0.03	0.036	0.031				
Main model parameters							
sand(%)	52.0	32.8	52.0				
clay(%)	30.1	13.1	30.1				
porosity	0.36	0.36	0.36				
h (10 ⁻⁴)	2.21	2.52	2.21				
q	1.00	0.97	1.00				

Table 3. statistics of LDAS performance

and main model parameters in satellite

0.81

0.012

0.03

52.0

30.1

0.36

2.21

overpass time study cases.

Performance indices

Main model parameters

• The assimilation of two polarized signals follows the observed trend well (Fig 3). Indicating both polarizations are sensitive to soil moisture changing.

• The horizontal one yields underestimate, while is improved when using the "control parameters", indicating that h-pol is more sensitivity to land surface

case

MBE

RMSE

clay(%)

h (10^{-4})

davtime+

ctrl para

0.59

0.033

0.045

52.0

0.62

0.067

0.075

41.3

32.4

0.46

11.72

• The overestimate might be attribute to the effective soil temperature is lower than the surface skin temperature which is simulated by LSM during the daytime. A larger T_a input may require higher soil reflectivity to satisfy the

Comparison between calculated effective surface temperature and 3cm depth

Fig. 5. The upper panel shows the comparison between T_{eff_amsr} , T_{s_obs} and a Idas for nighttime, and the lower panel for daytime. Where $T_{eff\ amsr}$ is the effective surface temperature calculated from observed soil moisture and AMSR-E brightness temperature; $T_{s obs}$ is the observed ground soil moisture; $T_{g_{ldas}}$ is LDAS estimated ground surface temperature.

<u> </u>	0.30	(a) (EO
3 m ⁻³	0.25		
e(m	0.20	-	
stur	0.15	_ c	
moi	0.10		0000
Soil	0.05	- Como	
	0.00	120	1/0
	0.30	120	140
n ⁻³)	0.25	(b) (GLD
(m ³ r	0.20	_	4
ture	0.15		q
noist	0.10		ioooq
oil n	0.05	-200	
Š	0.00	a.A	<u> </u>
		120	140
-			
			case
	CE	OP forc	ing
	R		0.8
	\mathbf{M}	BE	0.0
	R	MSE	0.0
	GL	DAS for	rcing
	R		0.
	Μ	BE	-0.0
	R	MSF	0.0
	As	simila	atir
	pro	oduce	es (
	no	ne is	alv
	A	single	e tr
	ma	ainly o	due
	1.	Imp	erte
	2.	Bias	s in
	3.	Unc	erta
		atm	osp
		C	
4	١.	JU	m

- The horizontal polarized signal is expected to improve soil moisture estimate if the LSM take land surface spatial heterogeneity into account.

References

- [1] Yang, K. et al., 2007. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. Journal of the Meteorological Society of Japan. 85A: 229-242.
- [2] Sellers, P.J. et al., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation. Journal of Climate, 9(4): 676-705. [3] Wang, J.R. and Choudhury, B.J., 1981. REMOTE-SENSING OF SOIL-MOISTURE CONTENT OVER
- BARE FIELD AT 1.4 GHZ FREQUENCY. Journal of Geophysical Research-Oceans and Atmospheres, 86(NC6): 5277-5282.
- [4] Qin, J. et al., 2009. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. Journal of Geophysical Research-Atmospheres, 114.

31	0.79	0.84	0.79	0.77	0.73	0.80
12	0.011	-0.009	0.028	0.025	0.010	0.013
28	0.026	0.026	0.037	0.035	0.026	0.027
5						
80	0.79	0.80	0.74	0.74	0.74	0.78
009	-0.016	-0.027	0.003	-0.008	-0.018	-0.013
031	0.031	0.037	0.025	0.027	0.031	0.028

ng different frequency-combinations different soil moisture estimates and ways superior to the others. requency combination performs poor

e to three reason:

fect radiative transfer model;

n forcing data;

frequency-dependent tainties of phere influence.

averaged daily mean nearsurface soil moisture observations (Unit for MBE and RMSE: m³ m⁻³).

data or

compared

frequency combinations of

microwave data and driven by

either CEOP observed forcing

with

GLDAS data

station-

Frequency combination based ensemble estimation

 $\theta_{ensemble} = Average\{\theta_{ii}\} \ (i = 1, 2; j = 3, 4, 5)$

• The ensemble method is expected to filter out the uncertainties, and performs more robust when driven by different forcing data (Fig. 6).

mary

• It is recommended to assimilate vertical polarized, nighttime signal in current LDAS.

• The proposed frequency combination-based ensemble method can give robust estimate of surface soil moisture.

• The daytime signal can also improve the estimate by revising LSM to simulate effective surface layer temperature.