

Updated Gridded Analysis Products provided by the Global Precipitation Climatology Centre (GPCC), its Quality Control, and Interpolation Schemes

- M. Ziese (1), U. Schneider (1), A. Meyer-Christoffer (1), P. Finger (1), K. Lehner (1),
- E. Rustemeier (2), A. Becker (1), B. Rudolf (1)
- (1) Deutscher Wetterdienst, Hydrometeorology, Offenbach am Main, Germany
- (2) University Bonn, Meteorological Institute, Bonn, Germany

Outline

- 1. Current GPCC Products
- 2. Interpolation Schemes
- 3. Products under Development
- 4. Conclusion

GPCC Database

- core data from national meteorological and hydrological services
- global and regional data collections (e.g., FAO, GHCN, CRU)
- near-real time data from WMO-GTS (SYNOP reports, CLIMAT messages)

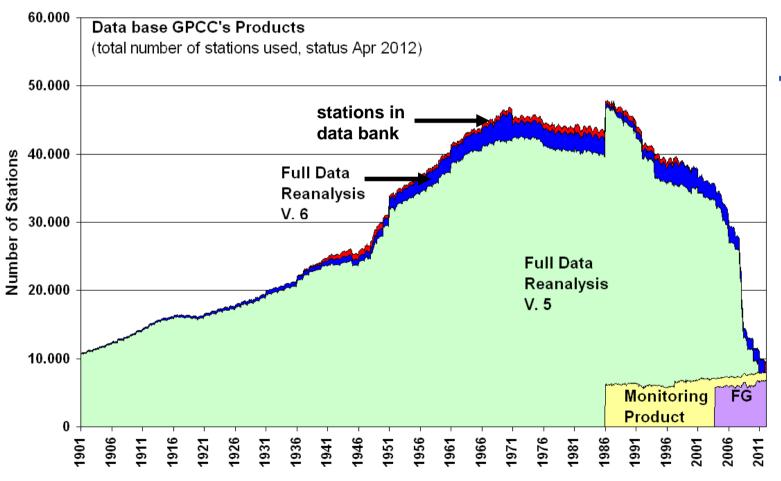
GPCC Quality Control

- data stored in relational data bank with source specific slots
- data checked before import into data bank against background statistics and available data from other sources to correct or eliminate
 - wrong precipitation data (coding errors, factor-10-errors, conversion errors)
 - wrong station metadata (location and interchange with other station)

GPCC product suite

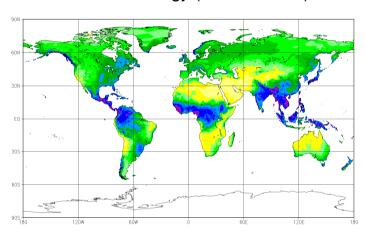
- non-real-time products
 - Climatology (long term means)
 - → Full Data Reanalysis (best data coverage)
 - → VASClimO (current homogenized product)
- near-real-time products
 - → First Guess Product (based on SYNOP reports, automatic quality control)
 - Monitoring Product (First Guess Product extended by CLIMAT messages, CPC data and manual quality control)

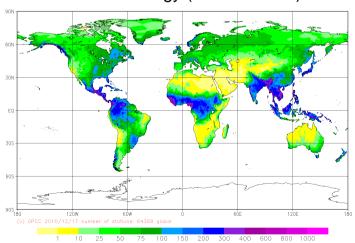
Latest released (non-real-time) GPCC Products


- Climatology (Version 2011)
 - based on about 67200 stations (former version about 64400 stations)
 - → target reference period 1951 2000
 - stations with at least 10 years of data
 - → if possible, uses above reference period, else 30 year reference period, at least 10 year reference period
 - background climatology for GPCC products (Full Data Reanalysis, Monitoring Product, First Guess)
- → Full Data Reanalysis (Version 6)
 - uses same stations as Climatology
- Monitoring Product (Version 4)
 - reanalyzed applying new Climatology for all months since 2007

Applied number of stations for GPCC products

non-utilized stations loaded after last product release





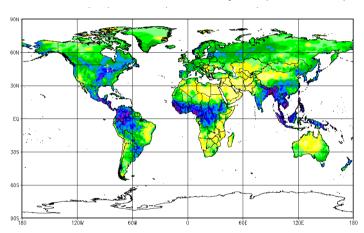
Difference between former and current Climatology

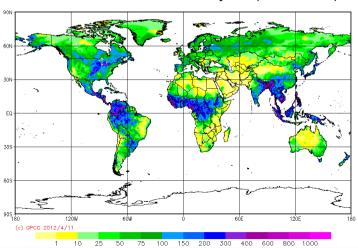

Current Climatology (Version 2011)

Former Climatology (Version 2010)

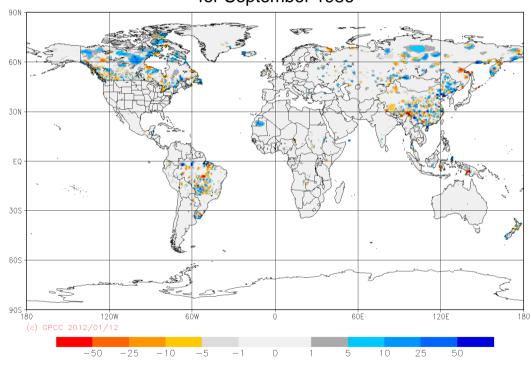
Difference of September Climatologies Version 2011 vs. Version 2010

- example: September
- differences due to new additional data
- most differences less than 25 mm/month.



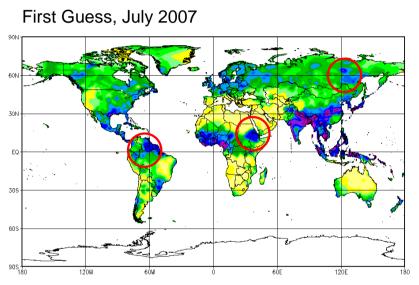


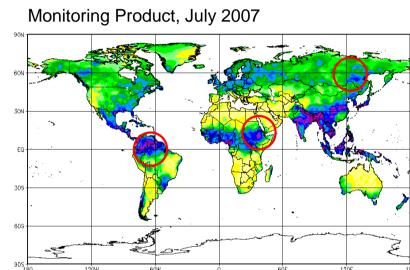
Difference between former and current Full Data

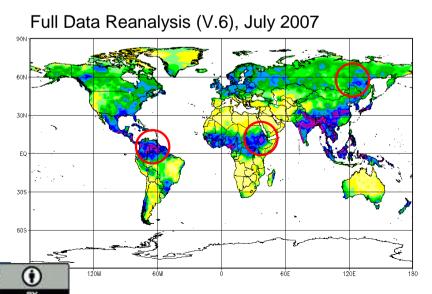

Current Full Data Reanalysis (Version 6)

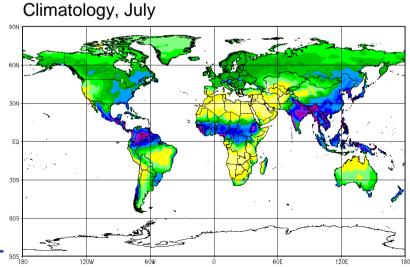
Former Full Data Reanalysis (Version 5)

Difference Full Data Reanalysis (Version 6 minus Version 5) for September 1986


- example: September 1986
- differences due to new additional data







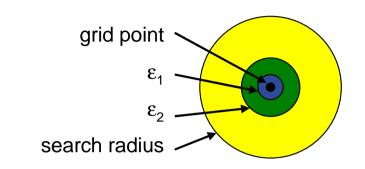
Comparison GPCC Products

Comparison of Interpolation Schemes

- used interpolation schemes:
 - → modified SPHEREMAP
 - ordinary Kriging
 - arithmetic mean
- > two test months: July 1986 and January 1987
- population divided into collectives with 300 stations
- using 4800 stations as reference
- → 50 runs with arbitrary selected reference stations to calculate skill scores
- stepwise reduction of station density (input stations, not reference stations)
- runs with interpolation of anomalies and absolute values
- reduced station density in Germany (219 instead of more than 4000)

SPHEREMAP (Willmott et al. 1985)

- application of Shepard's scheme on a sphere (Shepard 1968)
- current operational interpolation scheme at GPCC
- combines angular and distance weighting
- uses at least 4, at most 10 stations
- search radius depends on station density



Modifications in SPHEREMAP

- \rightarrow defined other inner search radius ϵ : ϵ_1 and ϵ_2
- \rightarrow ε_1 = 10% of grid size, ε_2 = 50% of grid size

- \Rightarrow if stations were found within ϵ_1 but not between ϵ_1 and $\epsilon_2 \to$ arithmetic mean of stations within ϵ_1
- \rightarrow if stations were found within ε_2 interpolation runs as usual
 - using more stations in case of high station density
- interpolation runs on 0.25%.5° subgrid
- using area weighting and land-portion weighting to calculate on final grid
- runs operationally since 1995, as anomaly interpolation on basis of our Climatology since 2008

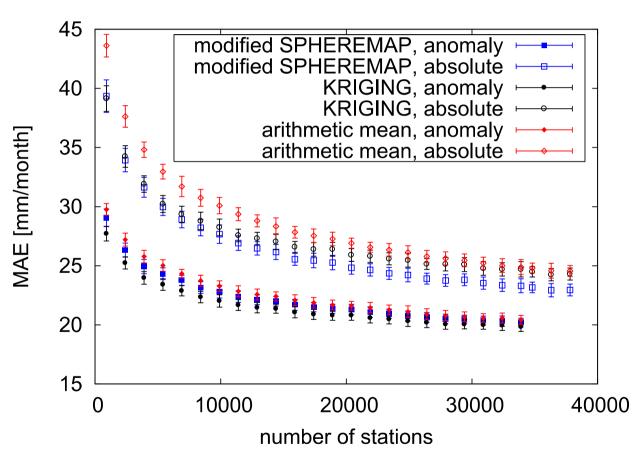
Kriging (Krige 1966)

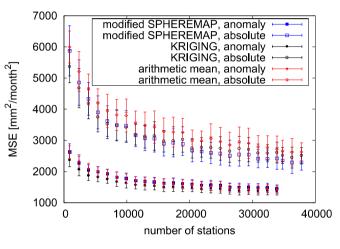
- statistical interpolation scheme
- calculates correlations on basis of variograms
- not operational at GPCC
- uses at least 4, at most 10 stations
- search radius depends on station density
- > test version applies only one variogram for global interpolations

Used skill scores

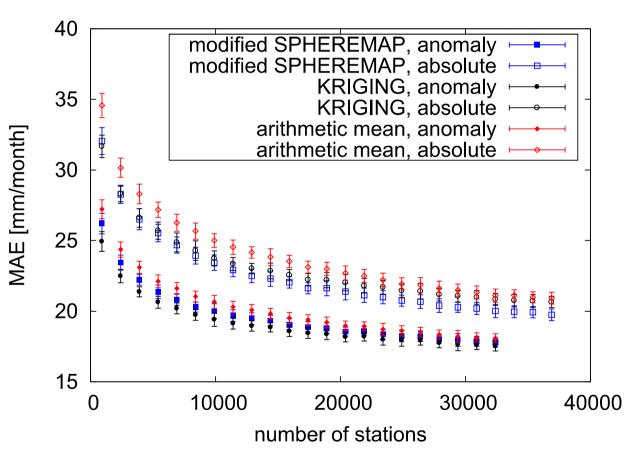
- mean squared error (MSE) [MSE] = mm²/month²
 - sensitive to outliers
- mean absolute error (MAE) [MAE] = mm/month
 - measure of average error

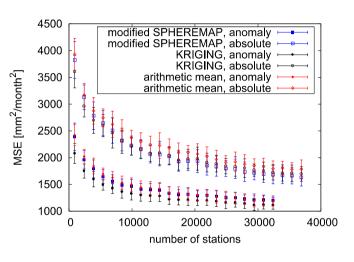
$$MSE = \frac{1}{n} * \sum_{k=1}^{n} (y_k - o_k)^2$$


$$MAE = \frac{1}{n} * \sum_{k=1}^{n} |y_k - o_k|$$

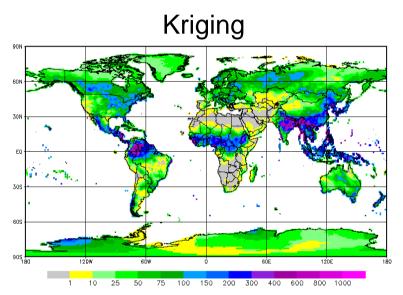

- o observed value at station
- y interpolated value at station
- n number of stations

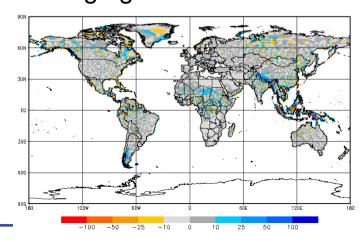
Comparison July 1986


- anomaly interpolation better than absolute interpolation
- modified SPHEREMAP best for absolute interpolation (Climatology)



Comparison January 1987


- anomaly interpolation better than absolute interpolation
- modified SPHEREMAP best for absolute interpolation (Climatology)

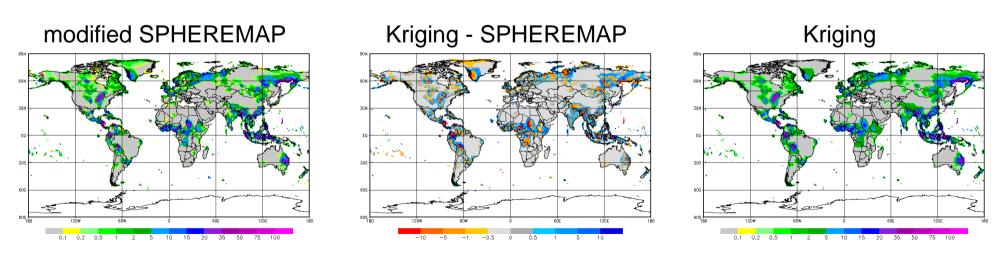


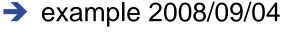
Comparison SPHEREMAP and Kriging July 1986

Kriging - SPHEREMAP

- overall patterns look similar
- Kriging produces smoother patterns

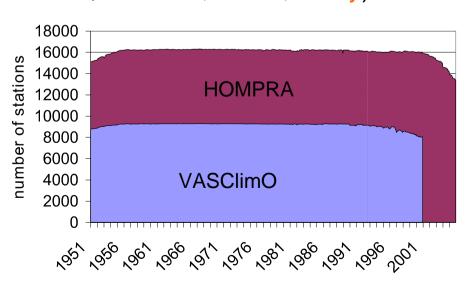
most differences due to different gradients of precipitation and in data sparse areas





Products under Development

- restarting daily analysis
 - → First Guess Daily will be released together with First Guess Product 3 to 5 days after each month
 - → based only on SYNOP reports
 - currently testing and optimizing interpolation schemes (modified SPHEREMAP and Kriging)



Products under Development

- new homogenized analysis
 - → HOMPRA (HOMogenized PRecipitation Analysis)
 - → will replace VASClimO
 - → applies PRODIGE (Mestre 2004)
 - → collaboration with university Bonn (development of automated PRODIGE, see E. Rustemeier et al., EGU2012-10654, room 16, 14:45, today)
 - → covers period from 1951 to 2005
 - → 16388 stations selected for homogeneity tests (VASClimO 9343 stations)

Conclusions

- new Climatology and Full Data Reanalysis were released in December 2011
- modified SPHEREMAP has good performance at GPCC, no need to change interpolation scheme
- anomaly interpolation reduces interpolation error more than using different schemes with absolute values
- → First Guess Daily and HOMPRA still under development (release of HOMPRA scheduled for end of this year)
- products are free available from GPCCs website gpcc.dwd.de
- contact: gpcc@dwd.de
- → GPCC team: Dr. Andreas Becker (head)

scientists: Udo Schneider, Anja Meyer-Christoffer, Kirstin Lehner (new since January 2012), Dr. Markus Ziese

programmer: Peter Finger

technician assistants: Astrid Heller, Peter Stender, Jan-Nicolas Breidenbach

