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The upper Cretaceous-lower Palacocene black shales of Egypt are part of a giant worldwide belt of organic-rich shales. In Egypt, these I M= — I- The observed high quantities ot steroids suggest that
shales occur in an east-west trending belt extending from Quseir-Safaga district along the Red Sea to the Kharga-Dakhla landstretch pass- 2 g” : : marine algae and chlorophyll c-containing phytoplanktons
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ing through the Nile Valley. They are hosted mainly in the Duwi and Dakhla formations in ascending order. z| & H : : were the main primary producers (Knoll et al., 2007).
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The characterization of the studied Egyptian black shales, was conducted on core samples collected from two shallow bore holes in N : : 2- The sharp decline of all steroids at the Cretaceous-Palae-
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Western (OSN-1) and Eastern (OSR-1) Deserts of Egypt drilled by the Egyptian Mineral Resources Authority (former Egyptian Geologi- ol 1. u : : ocene boundary mm OSR-1 section agrees well with
cal Survey; Fig. 1). MEH b i i Sepulveda et al., (2009). This indicates that the eukaryotic
Bl b i i algae were affected by extinction of phytoplanktonic com-
el i i munities and the diminished productivity at the boundary,
="z B i i whereas bacteria and cyanobacteria were not aftected in the
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Fig.(1): Bore holes location (stars). Fig.(2): Example for the hydrocarbons found in the samples. Fig.(3): Example for the fatty acidss found in the samples. il | R | | i i — i i n some strata.
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About 100 samples from both locations were extracted for their lipid biomarker content using gas chromatography mass spectrometry SelEp | e 5 .' | 1 : : : immaturity of the preserved organic material. However, the
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omarkers during sea level fluctuations. Both the hydrocarbons and fatty acids fractions were examined 1n all samples (Figs. 2 and 3). -1 |3 = : : . so | : section OSN-1 indicates enhanced clay catalysis rather than
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ngh quantities of desmethyl steranes (m/z 217) and rearljange.d steranes (diasterenes, m/z 25 7), were ob.served. n the samples. Differ = e }))) i : : : : increased thermal maturity.
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panoic acids over their 17a, 21 (H) counterparts, were observed. Negative carbon 1sotope excursions of -1 to -1.3%o and -2%o0 for OSN-1 g : : o = | : el
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and OSR-1, respectively, along with high organic carbon content (the interval in grey ; TOC data are not shown) are detected at the g e £ : &' : e N ~. References
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