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Polymorphic authigenic carbonates and foraminifera taphonomical characteristics of

a paleoseep, Southwestern Taiwan

Several polymorphic authigenic carbonate
concretions (ACCs) were preserved in the Pliocene
Yenshuiken Shale of SW Taiwan foreland sequence
(Fig. 1, 2, 3). Carbon isotopic signatures and
morphology of these carbonates (Fig. 3) and
assoclated chemosymbiotic bivalve fossils (Figs. 4, 5)
indicated their methane seep origin. Foraminiferal
fossil assemblages 1n host rocks represented
distinctive differentiation in short distance (~40 cm)
away from some large ACCs (Fig.6a, b), revealed
that the taphonomic characteristics of foraminiferal
assemblages were directly influenced by methane
emission intensity within the paleoseep.
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Fig. 1: Geological Map and distribution of mud
volcanoes and mud diapirs of Taiwan
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Fig. 2: Geological Map of research area. Outcrops of
the Chiahsien Paleoseep mainly expose at
Exposure A and B (solid purple stars).
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Fig. 3: Field occurrences and carbon/oxygen isotope compositions of
three types of authigenic carbonate concretions of the
Chiahsien paleoseep.
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There are three modes of ACCs (Fig. 3):
(1) Massive brecciated blocks (MBBs;
typically 2 to 4m long, 1 to 2 m wide,
and 3 to 5 m high; §°C: —-49.6~
—38.2%o, averagely —44.2%o)are large,
whitish gray to grayish vyellow colored, mound-shaped
carbonate bodies, with or without vent and pipe structures, B Ny
in the exposure A along the Chihshanhsi River (Fig. 5). S
Chemosymbiotic lucinid pelecypods Anodontia goliath (Yokoyama) ‘EeSsSsa
fossils were found within MBBs; (II) Giant Chimneys (GCs; each
ca. 2 to 5 m wide and 30 m high; §°C: -43.1~-17.7% ,
averagely —32.9%. )are large and thick cylindrical or fusiform
concretions developing upwardly perpendicular to bedding in the
exposure A (Fig. 5). They occur either in 1solation or parallel to
ecach other, and contain of vent/pipe structures (diameter >15
cm) clustered with irregular shaped carbonates. Abundant in situ
Anodontia goliath (Yokoyama) fossils occurred in the margin of one
large fusiform GC body (size: ca. 5m x 5m x 10 m; Fig. 4); and
(111) (SPNs; 8°C: —43.5~5.9%;, averagely
—25.9% ) are composed ofelongated small carbonate cylinders
with a diameter commonly 5 to 15 cm. They occurred both in
exposure A and B, and bank of the Chihshanhsi river. The
“pipes” develop upwardly perpendicular to the host mudstone
bedding, and some are branched or connected horizontally with
same pipes (Fig. 5). We also found a few Ilucinid fossils
Lucinoma annulata (Reeve) together with some pipes (Fig. 5).
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g Fig. 5: Semi-schematic diagram of studied outcrops, occurrences of three types of authigenic carbonate concretions and licinid fossils, sampling
locations of host rocks, and reconstructed spatial distribution of authigenic carbonate concretions. The attitude of stratais N40 E, 35 E.

Fig. 6: Summary of foraminiferal fauna, CaCQO, content, and carbon isotopic composition of total inorganic carbon of host rock samples picked
adjacent to (a) a MBB and (b) a large GC, (C) between SPNs,and (d) from control sites.
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Comparing to the non—seep controls in the Yenshuiken Shale
(Fi1g. 6d), muddy host rocks that were <30 cm around MBBs yield
low CaCO, contents (<1%), low foraminiferal abundances (<6.3
individual per gram of sediments), high percentages of
agglutinated benthic foraminifera (>98%), and almost absence
of calcareous foraminifera (both benthic and planktonic)
(Fig. 6a); however, host rocks that were >30 cm away from
MBBs yield “ normal marine” assemblages (high foraminiferal
abundance: 20.7-77.5 individuals/per gram of sediments; low
agglutinated foraminifera percentages: <13.4%; fair CaCO,
contents: 3.4-7.8%) (Fig. 6a). Host rocks that were <80 cm
around GCs also yield abnormal assemblages, whereas those were
>80cm away from GCs yield normal assemblages (Fig. 6b). Host
rocks around and between SPNs yield consistent characteristics to
control sites (Fig. 6¢, d).

Absence of calcareous tests of foraminiferal fossils 1s due to pore
water acidification within the taphonomically active zone (TAZ),
which 1s triggered and accelerated by anaerobic oxidation of methane

(AOM) in the methane seep environments (Fig. 4). We suggest that
foraminiferal assemblages can be influenced by methane seep
activities, therefore they can reflect and record geochemical interface

(e.g. TAZ; sulfate—methane transition zone (SMTZ) or sulfate—
methane interface (SMI)where AOMoccurs) shifting within paleoseeps.
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