



Freie Universität Bozen Libera Università di Bolzano Free University of Bozen · Bolzanc

Fakultät für Naturwissenschaften Facoltà di Scienze Faculty of Science und Technik e Tecnologie and Technology



<u>D. Penna<sup>1,2</sup>, N. Mantese<sup>1</sup>, A. Gobbi<sup>1</sup>,</u> M. Borga<sup>1</sup>, G. Dalla Fontana<sup>1</sup>

daniele.penna@unipd.it

<sup>1</sup>University of Padova, ITALY <sup>2</sup>Free University of Bozen-Bolzano, ITALY



EGU General Assembly, Vienna, 24 April 2012



- Soil moisture (SM) and transient water table (WT): highly variable in space/time → dominant controls on their response still poorly understood
   (McGuire & McDonnell, 2010, WWR; Brocca et al., 2012, JoH)
- In mountain catchments: complex topography → useful discretization in landscape elements (riparian/hillslope zone) → insight into spatial sources of runoff (Jencso et al., 2010, WWR; Penna et al., 2011, HESS)
- Separate analysis of two zones: different dynamics (Seibert et al., 2003, WWR; Haught & van Meerveld, 2011, HP) → insight into stream-hillsope connectivity → role of catchment heterogeneity (Van Nieuwenhuyse et al., 2011, HP) and hillslope properties (Hopp et al., 2009, JoH) on runoff response

| Introduction | Objectives | Study Area | Methodology | Results | Conclusions |
|--------------|------------|------------|-------------|---------|-------------|
|--------------|------------|------------|-------------|---------|-------------|



- Is catchment topography a dominant control on the spatio-temporal variability of SM and WT?
- In space: different dynamics in the riparian and hillslope zone? Which units are the main spatial sources to runoff?
- In time: different WT dynamics in wet/dry periods?
- What is the role of initial conditions and rainfall amount on stream-hillslope connectivity?

| Introduction | Objectives | Study Area | Methodology | Results | Conclusions |
|--------------|------------|------------|-------------|---------|-------------|
|--------------|------------|------------|-------------|---------|-------------|

### Study Area: Bridge Creek Catchment



Italian Dolomites (Eastern Alps)

| Area (km²)                    | 0.14                    |
|-------------------------------|-------------------------|
| Elevation (m ASL)             | 1932-2515               |
| Mean slope (°)                | 29.9                    |
| Mean annual precipitation     | 1220 mm<br>(49% snow)   |
| Mean monthy<br>temperature    | -5.7°C<br>14.1°C        |
| Streamflow range<br>(7 years) | 4 - 90 ls <sup>-1</sup> |



### **Bridge Creek Catchment**







## Bridge Creek Catchment





### Instrumentation

Depth

0.7-1.5 m

5, 20, 40 cm



### Temporal dynamics of SM and WT

() BY

(cc)



## Topographic control on SM spatial variability

#### along the hillslope

#### along the soil profile



• Along hillslope: SM decreases, variability increases

In depth: 5 cm wets up/dries down more and quicker

Introduction Objectives Study Area /

a Methodology

**Results** Conclusions



## Topographic control on WT spatial variability



Along catchment: higher level and variability close to outlet
 Hillslope/Riparian: significantly different levels

| Introduction | Objectives | Study Area | Methodology |  |
|--------------|------------|------------|-------------|--|
|--------------|------------|------------|-------------|--|



 $(\mathbf{i})$ 

BY

(CC)

## Hillslope and Riparian WT dynamics

### • High spatial variability of WT response

(Haught & van Meerveld, 2011, HP; Bachmair et al., 2012, WRR)

• However: certain degree of similarity within the same zone



### Hillslope-Riparian WT relation



hysteresis

 $\mathbf{\hat{I}}$ 

BY

(Penna et al., 2010, IAHS Pub.;

500

450

400

350

riparian

mean depth to water table (mm)

300

Rodhe & Seibert, 2011, HP)

250

200

340

320

300

280

riparian

mean depth to water table (mm)

260

240

220

200

## Hillslope-Riparian WT dynamics in wet/dry periods



## Hillslope-Riparian WT dynamics in wet/dry periods



First wet period

#### Dry period

### Second wet period

nclusions

CC)

(†)

BY

| Introduction | Objectives | Study Area | Methodology | Results | Со |
|--------------|------------|------------|-------------|---------|----|
|--------------|------------|------------|-------------|---------|----|

### Stream-Hillslope connectivity

 $(\mathbf{i})$ 

BY



□ ⊕ no response
■ + response

Connectivity tends to increase with increasing AWC and P

Extents upwards from riparian and lower part of catchment

Introduction Objectives Study Area Methodology Results Conclusions



- Strong control of catchment topography on spatiotemporal variability of SM and WT
- $\circ$  In space: different dynamics in hillslope-riparian zone  $\rightarrow$  lagged response of hillslope WT
- In time: higher hillslope-riparian correlation during wet conditions → important hillslope WT contribution to runoff
- Connectivity dependent on initial conditions + rainfall amount and starting from riparian/lower portions of the catchments

| Introduction | Objectives | Study Area | Methodology | Results | Conclusions |
|--------------|------------|------------|-------------|---------|-------------|
|--------------|------------|------------|-------------|---------|-------------|

### Future investigations

 $(\mathbf{\hat{I}})$ 

BY



Analysis of hillslope-riparian WT lag time in wet/dry periods:
Do lag times decrease above the threshold?
Does size of hysteretic loope decrease?
Are there other controls on connectivity?

| Introduction Object | es Study Area | Methodology | Results | Conclusions |
|---------------------|---------------|-------------|---------|-------------|
|---------------------|---------------|-------------|---------|-------------|

# Thank you for your attention

() BY

00

