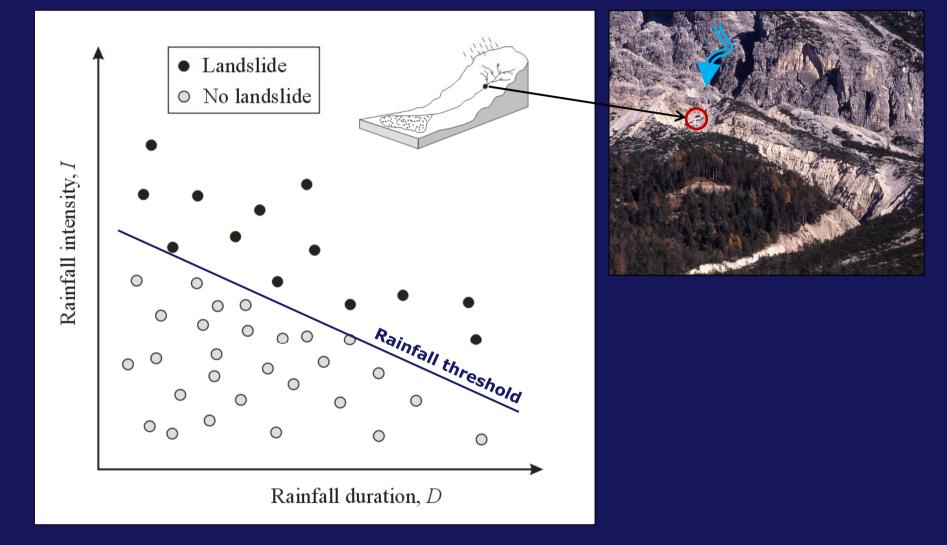
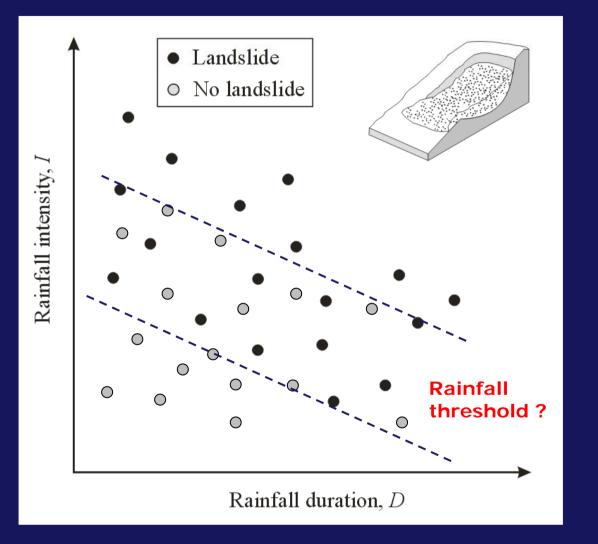
European Geoscience Union General Assembly 2012

Vienna, Austria, 22-27 April 2012


Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach

> Matteo Berti Mario Martina Silvia Franceschini Sara Pignone Alessandro Simoni Marco Pizziolo



Problem statement (1)

Problem statement (2)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

A = Landslide event

B = Rainfall event

P(A) = Prior probability of A

P(B) = Marginal probability of B

P(B|A) = Conditional probability of *B* given *A*

P(A|B) = Conditional probability of A given B

A simple example

Ν	Duration	Intensity	Landslide
	(day)	(mm/day)	Landshue
1	0.2	12	0
2	0.5	30	0
3	0.6	21	0
4	0.7	15	0
5	0.8	65	0
6	0.5	78	•
7	0.7	85	0
8	0.2	90	•
9	0.9	33	0
10	0.3	25	0
11	1.3	22	0
12	1.5	36	•
13	1.8	35	0
14	1.8	10	0
15	1.6	60	•
16	1.7	75	•
17	1.2	70	0
18	1.2	40	
19	0.4	45	0
20	0.2	10	0

$P(A \mid B) =$	$P(B \mid A) \cdot P(A)$
I(A D) =	P(B)

Number of rainfall events, N(B)=20Number of landslides, N(A)=5

What is the probability to have a landslide IF an intense rainfall (I>40 mm/day) occurs?

Conditional probability of the critical rainfall: P(B|A)=4/5=0.80

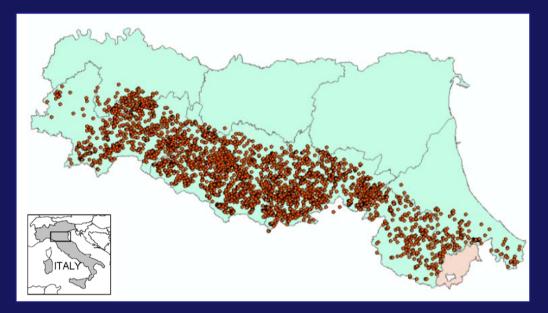
A simple example

Ν	Duration	Intensity	Landslide
IN	(day)	(mm/day)	Landshue
1	0.2	12	0
2	0.5	30	0
3	0.6	21	0
4	0.7	15	0
5	0.8	65	0
6	0.5	78	•
7	0.7	85	0
8	0.2	90	•
9	0.9	33	0
10	0.3	25	0
11	1.3	22	0
12	1.5	36	•
13	1.8	35	0
14	1.8	10	0
15	1.6	60	•
16	1.7	75	•
17	1.2	70	0
18	1.2	40	0
19	0.4	45	0
20	0.2	10	0
19	0.4	\square	

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Number of rainfall events, N(B)=20Number of landslides, N(A)=5

What is the probability to have a landslide IF an intense rainfall (I≥40 mm/day) occurs?


Conditional probability of the critical rainfall: P(B|A)=4/5=0.80

Marginal probability of the critical rainfall: P(B|A)=9/20=0.45

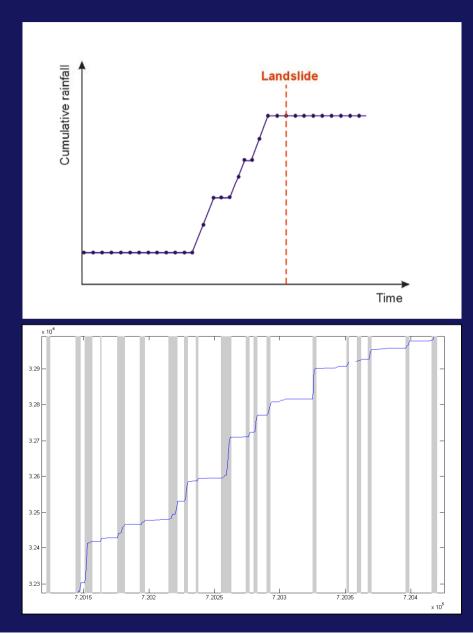
Prior landslide probability: P(A)=5/20=0.25

Landslide probability: P(A|B)=(0.80.0.25)/0.45=0.44

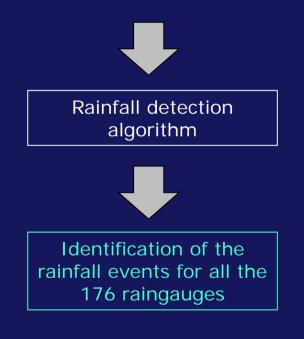
Application to the Emilia-Romagna dataset (Italy)

4141 Historical landslides

Years: 1939-2009

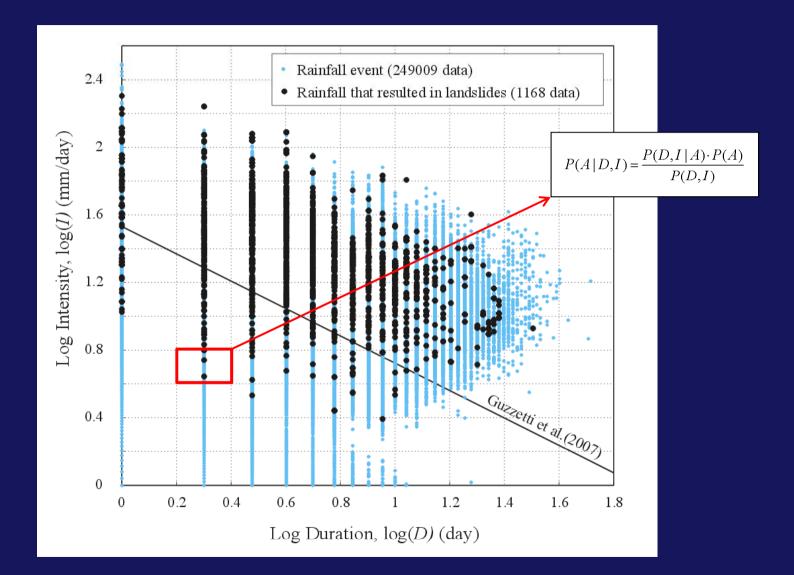

Triggering date known with daily accuracy

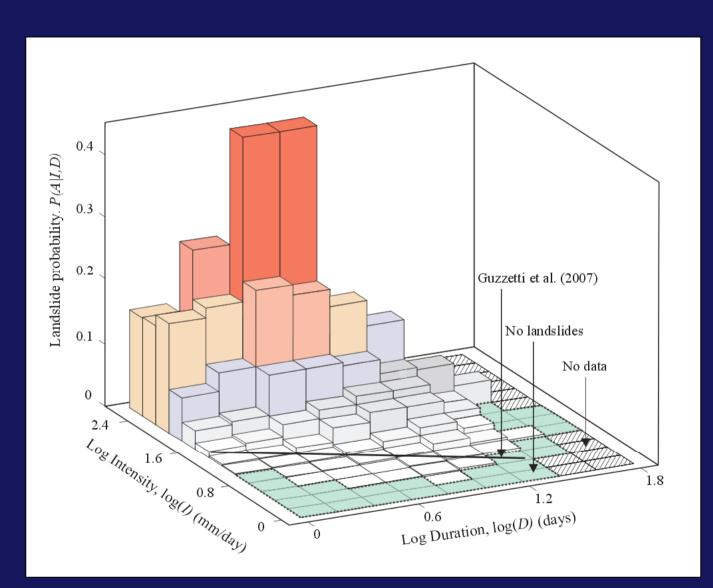
176 Raingages


Years: 1931-Present

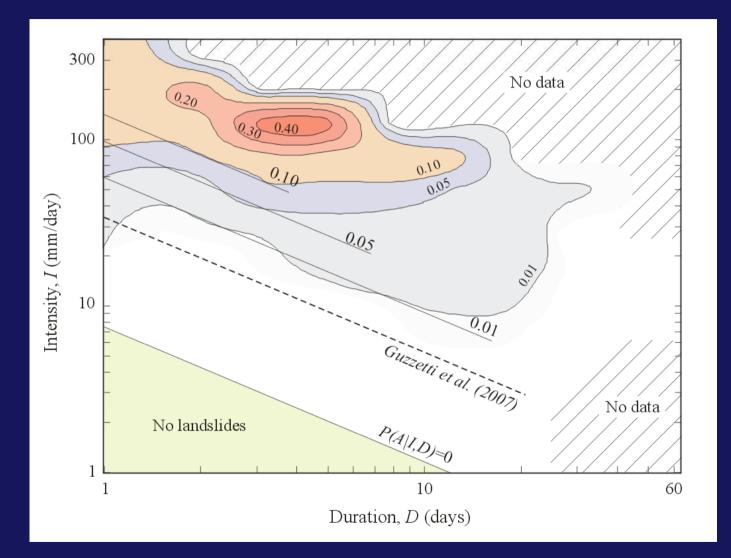
Data preparation

For each historical landslide we:


- 1. Compared the cumulative rainfall of the 3 closest raingauges
- 2. Manually identified the triggering rainfall


Traditional approach

Rainfall that resulted in landslides Rainfall that NOT resulted in landslides 1000 1000 249009 data 1168 data False alarms Rainfall intensity, I (mm/day) Rainfall intensity, I (mm/day) 100 100 10 10 Guzzetti et al. (2007) Guzzetti et al. (2007) 1 10 100 10 100 Rainfall duration, D (days) Rainfall duration, D (days)


Bayes approach

Landslide probability in the rainfall duration-intensity plane

Landslide probability in the rainfall duration-intensity plane

Conclusions

- A probabilistic approach is required to define rainfall thresolds in complex geological conditions
- Both the rainfall that resulted and NON resulted in landslides should be considered
- Bayes theory is suitable to define probabilistic rainfall threshold
- In our test area, there is a good agreement between the probabilistic approach and the traditional methods