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Our project background
"Improved Drought Early Warning and FORecasting to strengthen preparedness and adaption 
to droughts in Africa" (www.dewfora.net)

We are in the preliminary step of the development of a statistical seasonal drought foreshado-
wing model for the Limpopo

1. Analysis of meteorological drought variability case studies

2. Identification of climatic driving factors 

3. Development of a statistical seasonal drought foreshadowing model

Background
Important role of drought indexes in monitoring
SPEI and SPI are established as powerful drought indexes that represent meteorological drought. Indexes and remotely sensed data are impor-
tant tools of modern drought monitoring and drought early warning systems. These drought indexes are designed to ease the understanding 
of drought and have a strong potential to support decision making when reliable forecasting will be available to end users in the future. 

Show the value of drought index forecasts to end users
However, the drought phenomenon is very complex and so is the interpretation of SPEI for end users. Assuming, that forecasts of drought in-
dexes will become available in the coming decade, ways have to be developed to ease interpretation of SPEI in data sparse regions, where re-
motely sensed data serves as an essential supplement of drought monitoring. We show how meteorological drought affects vegetation status 
in the Limpopo region. Here, we present the current state of our ongoing preliminary analysis. 

Poster overview
The middle column contains an analysis of the relation between vegetation status and meteorological drought. In the right column we show 
first steps in the identification of climatological driving facors of meteorological drought.

Box 2: The Standardized Precipitation Evapo-
transpiration Index (SPEI) 
SPEI was developed by Vicente-Serrano et al. 2010. 
It is a drought index, which can be compared across 
different regions. The development is based on the 
Standardized Precipitation Index but it also takes the 
influence of temrature into account. It is calculated 
in three steps:
1. Calculate the difference of precipitation and eva-
potranspiration for three succeeding months (p.g. 
using Thornthwaite method)
2. Fit a distribution for every month independently 
(log-normal or gamma)
3. Transform to normal distribution

Box 1: Negative Difference Vegetation Index (NDVI)
The NDVI is a measure of vegetation status. It is based on the reflectance in the near inf-
rared range (NIR) which is reflected by plants and the photosynthetically active visible range 
(VIS) which is absorbed. NDVI is calculated by 
         NDVI = (NIR - VIS) / (NIR + VIS).

Dominant drought patterns
Spatial patterns of drought are highly variable. Thus, in the first step the dominant patterns 
were extracted. This was achieved by employing Principal Component Analysis (PCA) in T-mode 
on 3-monthly SPEI. As a result, only 6 patterns (Principal component scores) were needed to 
account for 78% of the total variation. These modes of variation are shown in figure 5.

Teleconnection of drought patterns
The occurence of the spatial patterns in time is represented by the PC loadings. These were re-
lated to Sea Surface Temperature (SST) and climate anomaly indexes. Teleconnections were 
found to :
-  the equatorial Pacific and ENSO (PC 5 and 3) which represents the El-Nino phenomenon
-  the equatorial Indian Ocean (PC 3 and 6).
(See table 1 and figure 6 below)

Conclusions
The PC score pattern 5 is related to the El Nino anomaly and causes drought along a North-
South transect in the Limpopo basin. PC 3 is related to El-Nino and to the Indian Ocean and 
shows a drought centrally located in the Limpopo basin. This implies that the Indian Ocean and 
El-Nino are relevant driving factors for drought. However, correlations were generally very low, 
which points to other important local factors.

Teleconnections of drought in the Limpopo region

  PC1 PC2 PC3 PC4 PC5 PC6
SOI anomaly -0.06 0.05 -0.15 -0.05 -0.25 0.06

ENSO1.2 0.19 -0.02 0.11 0.16 0.12 0.04

ENSO3 0.15 -0.03 0.15 0.12 0.27 -0.02

ENSO4 0.11 -0.01 0.19 0.04 0.25 -0.05

ENSO3.4 0.13 -0.02 0.16 0.09 0.29 -0.07

Darwin SLP anomaly 0.07 -0.07 0.15 0.09 0.27 -0.04

Tahiti SLP anomaly -0.03 0.01 -0.09 0.02 -0.14 0.07

Tab. 1: Correlation of PC loadings and 
 climate anomaly indexes

Fig. 6: Correlation of sea surface temperature and PC loadings PCA scores of principal components 
 3 (upper right), 5 (lower left) and 6 (lower right)

Fig. 5: PCA scores of PCs 1-6 
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Impact of meteorological drought on vegetation cover

Fig. 3: Correlation of NDVI and 
 3-month SPEI

Fig. 4: Scatterplot of NDVI and 3-month SPEI at a location 
        of high (left), median (middle) and low correlation (right). 

Fig. 1: April 2002: NDVI in 1km resolution (left), aggregated to 0.5° (middle) and 3-month SPEI (right)

Fig. 2: Hierarchical clustering of 
 NDVI (ward)

Comparing NDVI and SPEI 3
Vegetation status is an integrative indicator, which can serve as a drought indicator but is affected by many more aspects. For example, 
it reflects vegetation type and time of the season. In contrast, SPEI is independent of the time of season and only resembles the „ab-
normality“ of the current rainfall conditions. Of course, the absence of rain is the very initial cause of rain, but due to the nature of 
SPEI and NDVI, the spatial patterns they exhibit can differ very much (see the example of April 2002 in Fig. 1 below). Here, NDVI of 
the initial resolution (1km) was aggregated to the resolution of the ERA-Interim reanalysis data set (0.5°).

Vegetation zones
Regions of similar conditions should 
change simultanously. Therefore, hierar-
chical clustering (ward method) was ap-
plied to identify these regions. The clu-
sters were scattered and overlapped, 
which indicates high local variation in 
NDVI.

Relating NDVI and SPEI
NDVI and 3-month SPEI were correlated cellwise (see figure 3). Locally the sensitivity 
to SPEI can differ strongly. The central Limpopo region shows stronger sensitivity to 
SPEI. The Northeastern and Southwestern Regions are less sensitive. For three exa-
mples, scatterplots are shown to highlight the different relations (figure 4). Both, the 
maximum and median correlation examples point towards a threshold of -1 SPEI at 
which NDVI decreases strongly. In the median correlation example SPEI values > -1 
are less affected by SPEI and in the minimal correlation example NDVI was hardly aff-
acted at all, since vegetation status is generally very low.

Conclusions
There are obvious regional differences in the sensitivity of vegetation status to SPEI. 
These differences tend to match the vegetation regions returned from clustering. By 
comparing NDVI and SPEI it is possible to identify regions of marked differences in 
sensitivity to rain anomalies. Hence, it can be shown, what regions can benefit from 
a forecast of a drought index like 3-month SPEI.

Outlook
In forecasting and warning systems finding thesholds is a bottleneck. The evalutaion 
with NDVI could be one way to establish regional thresholds, at which warnings could 
be issued.

Data & Methods
Data
The analysis was based on the following data:
-  Reanalysis data set ERA-Interim (Dee et al. 2011) of period 1979 - 2010 with which 
 3-month SPEI (See Box 2) was calculated
-   remotely sensed vegetation status NDVI (See box 1) from the MODIS mission (NASA, 
 2001) of period 2001 to 2010
-   climate anomaly indexes OISST-ENSO, SOI, Darwin and Tahiti sea level pressure 
 (NOAA, 2012)

Methods
The analysis was calculated in the statistical programming environment R. The following 
methods were applied using the packages stats, base, MASS, spacetime, snowfall, sp, xts, 
maps, car, RNetCDF, rgdal, zoo:
- Principal Component Analysis (PCA) in T-mode (see Compagnucci and Richman 2008)
-  hierarchical clustering using the ward method
- correlations and scatterplots
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