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Introduction
The comprehensive simulation of seismic wave propagation in realistic borehole
environments represents a pertinent, but as of yet largely unresolved problem
in exploration geophysics. Here, we present a method for the modeling of
poro-elastic seismic wave propagation in 2D polar coordinates based on Biot’s
dynamic equations (Biot, 1962a,b) and its extension to cylindrical coordinates.
The use of a poro-elastic approach is essential given that a key objective of
borehole seismic experiments is the estimation of the governing hydraulic char-
acteristics of the surrounding geological formations. The intermediate step of
using 2D polar coordinates is motivated (i) by the inherent complexity of the
derivation of the governing equations and the boundary conditions as well as
their benchmarking and (ii) by the relative ease of the extension of a corre-
sponding algorithm to cylindrical coordinates. For the sake of computational
efficiency and simplicity of model parameterization, we then assume symmetry
with respect to the vertical axis for the solution in cylindrical coordinates.

In the following, we first describe the design of the numerical algorithm. We
then show benchmarks of the 2D polar problem, including comparisons to an-
alytical and 2D numerical Cartesian solutions as well as the validation of the
reciprocity principle. Finally, we apply the cylindrical solution to a borehole
logging experiment and evaluate the impact of open- and closed-pore boundary
conditions as well as of a PVC casing.

Figure 1: Polar geometry for the comparison
of the numerical solution in 2D polar coordi-
nates with solutions in Cartesian coordinates
(Figures 2 and 3). X and O denote the source
and receiver locations, respectively. The ob-
jective of this setup is to demonstrate that the
wavefield is not distorted by the decomposi-
tion procedure at the interface. Note that, due
to the inherent singularity at r = 0, the center
of the innermost domain has a circular hole,
which for the purpose of these tests must be
chosen small enough so that the waves are
not affected by its presence.

Numerical algorithm
Pseudo-spectral methods are efficient and highly accurate techniques for mod-
eling complex wave propagation phenomena. They can be viewed as finite
differences with infinite-order accuracy, as the lateral derivatives are calculated
in the frequency domain using a forward and backward discrete Fourier trans-
form. When there are physical boundary conditions to satisfy, the Fourier method
is replaced by the Chebyshev method, which is not periodic and allows for an
explicit boundary treatment by decomposing the wavefields using characteristic
variables and applying appropriate boundary conditions. This allows, for ex-
ample, to account for variable flow impedance at fluid/poro-elastic interfaces,
which can be of the open-pore, closed-pore, or mixed-pore type (Deresiewicz &
Skalak, 1963).

The presence of the slow diffusive compressional wave makes Biot’s differ-
ential equations stiff. To overcome this problem, the corresponding equations
are solved with the splitting scheme introduced by Carcione & Quiroga-Goode
(1996) where the regular part is solved numerically and for each time step the
stiff part of the equations is solved analytically. The time integration is performed
with a 4th-order Runge-Kutta scheme.

Verification in 2D polar coordinates
To test the viability and accuracy of the numerical approach described above,
we compare the results of the 2D polar solution to the analytical solution for
poro-acoustic media and to numerical wavefields obtained with a previously
published pseudo-spectral method in 2D Cartesian coordinates (Sidler et al.,
2010).
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Figure 2: Seismograms of the solid pressure for the source and receiver locations shown in
Figure 1. (a) Pore fluid is non-viscous and the fast as well as the slow waves are visible. (b)
Pore fluid has the viscosity of water. In this case, the slow wave becomes dispersive and
only the fast P-wave can be observed. The source mechanism is a fluid injection with the
time history of a Ricker wavelet and a central frequency of 125 Hz.

Figure 3: Verification using the reciprocity
principle. Inadvertent effects of grid design,
notably with regard to the inherent singu-
larity at r = 0, and boundary treatment
could be identified with this test. The solid
line corresponds to source and receiver po-
sitioned as shown in Figure 1 and the circles
correspond to the corresponding reciprocal
solution.
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Figure 4: (a) Geometrical setup of a borehole-type experiment. The dipole-type source
(x-x) acts in the horizontal direction and is located together with the receivers (O) on the
surface of the perfectly rigid logging tool. (b) Snapshot of the pressure field after a propa-
gation time of 300 µs for the model shown in (a) with no casing and open-pore boundary
conditions.
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Figure 5: Comparison of the fluid pressure recordings (a) in the absence and (b) in the
presence of a casing (Figure 4a, Table 1).

Matrix bulk modulus, Km 1.36 GPa
shear modulus, µm 1.86 GPa
porosity, φ 0.38
permeability, κ 28.3 D
tortuosity, T 1.8

Grain bulk modulus, Ks 32 GPa
shear modulus, µs 44 GPa
density, ρs 2690 kg/m3

Fluid density, ρf 1090 kg/m3

viscosity, η 0.00105 Pa s
bulk modulus, K 2.25 GPa

Table 1:
Material properties of unconsolidated sand as given by Jackson & Richardson (2007).

Cylindrical solutions for a dipole source
In the following simulations, we assume symmetry with regard to the vertical
axis and hence replace the derivative with respect to the azimuthal direction by
a multiplication with a constant factor obtained by a Fourier analysis (Randall
et al., 1991). A borehole logging tool in a fluid filled borehole is simulated and
the fluid pressure is recorded along the logging tool (Figure 6). The properties
of the surrounding formation are given in Table 1 and are the same for all three
examples.

Fluid

Porous solid 1

P
orous solid 2

Wavefield
decomposition Rigid boundary

Figure 6: Cylindrical borehole geometry
with angular symmetry. The fluid filling the
borehole and the pores of the surrounding
formation is water. Porous solid 2 corre-
sponds to an unconsolidated sand (Table 1).
The porous solid 1 can represent a casing
between the fluid-filled borehole and the
porous formation. The radius of the bore-
hole is 125 mm. The hole in the center of
the domain has a radius of 50 mm and rep-
resents a perfectly rigid borehole logging
tool. The outer radius of the first of the two
porous domains is 135 mm.

Figures 7 and 8 show examples for the use of the modeling algorithm. In
Figure 7 the boundaries at the fluid-solid interface are varied between open- and
closed-pores. The closed-pore case can, for example, be used to represent the
presence of a thin, impermeable mud cake. In Figure 8 a PVC casing used to
stabilize boreholes in unconsolidated surficial sediments is added between the
fluid and the porous solid. The thickness of this casing is 1 cm. The material
properties of PVC are adopted from Bakulin et al. (2008) and we use a porosity
of 4 % and a permeability of 1900 D.
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Figure 7: Waveforms of the fluid pressure for an uncased borehole with (a) open-pore and (b)
closed-pore boundary conditions (Figure 6). The receiver spacing is 10 cm and the material
properties are given in Table 1.
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Figure 8: Same as Figure 7, but with the material properties of the first porous solid correspond-
ing to a PVC casing (Figure 6).

The resulting synthetic seismograms show a large sensitivity to the boundary
conditions as well as to the presence or absence of a casing, which in turn
illustrates both the inherent complexity of the underlying physical problem as
well as the need for realistic numerical simulations.

Conclusions
We have developed a pseudo-spectral numerical solution of the poro-elastic equa-
tions in cylindrical coordinates to simulate the propagation of seismic waves in
complex borehole-type environments. Using a domain-decomposition technique
based on the method of characteristics allows for splitting the numerical grid into
several concentric sub-domains and to satisfy the complex and variable physical
boundary conditions. The resulting numerical approach has been rigorously
tested in 2D polar coordintes before being expanded to axis-symmetric cylindri-
cal coordinates. Several examples involving fluid-filled boreholes, the presence
or absence of a casing as well as open- and closed-pore boundary conditions
demonstrate the potential of the numerical approach for the realistic modeling
of complex seismic wave phenomena in heterogeneous borehole environments.
The viability and flexibility of this approach will be further enhanced by its
pending extension to azimuthally heterogeneous media.
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