
Different radial basis functions and their applicability
for regional gravity representation on the sphere

Katrin Bentel(1), Michael Schmidt(2), Verena Lieb(2), Christian Gerlach(1,3)

(1)Norwegian University of Environmental and Life Sciences, Department of Mathematical Sciences and Technology, Ås Norway, katrin.bentel@umb.no (2)Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany
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1. Introduction
Global Earth gravity models can be regionally refined by terrestrial and/or airborne
measurements. Spherical harmonic basis functions, which are used to represent the
global models, are not very appropriate to represent the additional regional data. In-
stead, basis functions with localizing character are needed to represent the regional
signal. The resulting series expansion is then added to the global models. We inves-
tigate different types of quasi-localizing radial basis functions on a sphere and their
applicability to represent a regional gravity signal.

2. Spatial and frequency localization

Shannon kernel (band-pass): Optimal
localization of the signal bandwidth in the
frequency domain, but globally oscillating
in the spatial domain.
Abel-Poisson kernel: Quasi-compact
support in the spatial domain, but non-
bandlimited in the frequency domain.

top: spatial domain B
bottom: frequency domain Bn
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3. Scheme of the simulation
signal [m2/s2], sh deg 150 − 250
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Analysis

Synthesis

Cross-validation: Comparison to a field from spherical
harmonics (sh deg 150 to 250) with 0.25º spacing, 

plot of the differences in gravity potential.

Reuter grid and margins of 2º

Gravity potential observations  on 
a regular grid with 0.2º spacing in 

the Himalaya region.

Parameter estimation with pseudoinverse (pinv) 
and with variance component estimation (vce).
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The simulation gives residuals for each of the radial basis functions. From the resid-
ual fields, relative root mean square values are computed and given in the table in
section 5. The RMS values for the Shannon kernel and Abel-Poisson kernel, which
are given in red, are fairly high. Since these two functions are only optimal in one do-
main, we investigate in section 4 functions which give a compromise between spatial
and frequency localization. They give better RMS values.

4. Normalized kernels in spatial and in frequency domains
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top: spatial domain B
bottom: frequency domain Bn

All base functions B, which are used here, are based on an expansion in Legendre
polynomials Pn and defined by the choice of the coefficients Bn. For details see [4],
[1], or [2] amongst others.

B =
∞∑
n=0

2n + 1

4π
BnPn

5. Overview of the RMS values of the residuals
Residuals are computed in the cross-validation and σ are relative root mean squares.

Shannon kernel (low-pass) σpinv=4.3e-4 σvce=0.0017

Shannon kernel (band-pass) σpinv=0.0014 σvce=0.011

Blackman kernel type I (low-pass) σpinv=4.1e-4 σvce=2.7e-5

Blackman kernel type II (low-pass) σpinv=2.5e-4 σvce=7.6e-5

Modified Blackman kernel (band-pass) σpinv=3.0e-4 σvce=4.3e-4

Cubic polynomial kernel σpinv=1.7e-4 σvce=2.4e-5

Poisson multipole kernel σpinv=1.4e-4 σvce=2.1e-5

Abel-Poisson kernel σpinv=0.0051 σvce=0.0050

Abel-Poisson kernel truncated σpinv=5.8e-5 σvce=3.6e-5

6. Residuals

The following four kernels give equally
good results in the gravity representation
in terms of their RMS values (see table
above), but they have very different be-
haviour in the frequency domain. Thus,
they are compared in more detail.
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Pseudoinverse Variance component
estimation (see [3])

Blackman kernel type I
(low-pass)

differences [m2/s2], pinv
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Cubic polynomial kernel

differences [m2/s2], pinv
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Poisson multipole kernel

differences [m2/s2], pinv
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Abel-Poisson kernel
truncated

differences [m2/s2], pinv
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7. Conclusions and outlook
To represent a signal regionally on a sphere is fairly complex, since a lot of different
aspects have to be taken into account and boundary effects occur. Besides the type
of radial basis functions, their spatial distribution has to be chosen.

The comparison of different radial basis functions shows, that a compromise
between spatial and frequency localization is needed. The band-pass Shannon
kernel gives an optimal representation in the global case, but not regionally. Our
simulation study allows to compare different radial basis functions not only by their
spatial and frequency behaviour, but also in their performance in the representation
of a regional gravity signal.

Plots of the residuals are given for basis functions with low RMS values. There seem
to be resonance structures in the residuals obtained with a variance component
estimation. The low-pass Blackman kernel and cubic polynomial kernel show
fairly similar spectral behaviour and, thus, their residuals from variance component
estimation show similar structures, too.

Further detailed investigations of radial basis functions are needed and will be car-
ried out. Thereby, one of the next steps is to improve the variance component esti-
mation, since this method offers a lot of possibilities. This will also be an issue within
an ICCT study group on methodology in regional modeling.
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