

Outcome CREW Madison

EGU, 23-27 April 2012, Vienna, Austria

<u>R. Roebeling</u>, <u>B. Baum</u>, R. Bennartz, U. Hamann, A. Heidinger, A. Thoss, and A. Walther

Slide: 1

EUMETSAT

- Introduction
- Motivation
- Comparison of Level-2 retrievals
- Traceability and uniformity of Level-3 products
- Conclusions and recommendations

3rd Cloud Retrieval Evaluation Workshop

15-18 November 2011 Madison, Wisconsin, USA

Motivation

Overarching objectives:

to identify and address research questions related to cloud parameter retrievals;
to access differences between level-2 cloud parameter retrieval algorithms;
to enhance traceability and uniformity of level-3 cloud parameter products;

• to enhance the communication and develop international partnerships;

Strategy

• Organize biannual workshops;

Build a common data base of monitored and reference cloud parameter retrievals;

- Provide statistics of comparisons of monitored vs. reference cloud retrievals;
- Coordinate sub-working groups focusing on dedicated research topic;
- Establish links with other working groups (e.g. GEWEX-CA or SCOPE-CM);
- Write annual reports and, on an ad hoc basis, collaborative papers;
- Seek funding to finance on CREW related activities;
- Participate in joint research projects.

Comparison of Level-2 retrievals

Common Database

Golden days

i) 13 June 2008;iv) 22 June 2008;

ii) 17 June 2008;v) 3 July 2008

ii) 18 June 2008;

Name and Address of the Owner o

Products

Cloud Mask (*CMB*); Cloud Top Temperature (*CTT*); Cloud Water Path (*CWP*); Cloud Phase (*CPH*); Cloud Top Pressure (*CTP*); Particle Size (*Reff*). Cloud Top Height (*CTH*); Cloud Optical Thickness (*COT*);

Monitored data

- datasets from **16 passive imager retrieval algorithms**
- retrievals from **5** instruments: SEVIRI, MODIS, AVHRR, AIRS and POLDER

Reference data

• observations from 5 instruments: *Cloudsat, Calipso, MERIS , HIRS, and AMSR*

Thanks to Jerome Riedi, University of Lille, France

Evaluation Method

Passive imager inter-comparison (with focus on the SEVIRI, current status)

- Full disk images with corresponding statistics (means);
- Scatterplots, frequency distributions, and latitudinal plots;
- Maps of the mean and the standard deviation of all algorithms.

Validation against reference datasets (with focus on A-train satellites, future)

- CTH passive imagers (MSG, MODIS, AVHRR) against Calipso and Cloudsat;
- LWP passive imagers (MSG, MODIS, AVHRR) against AMSR;
- COD and REFF passive imagers against Calipso/Cloudsat;
- CPH, COD, REFF, and LWP against MODIS retrievals.

MSG inter-comparison

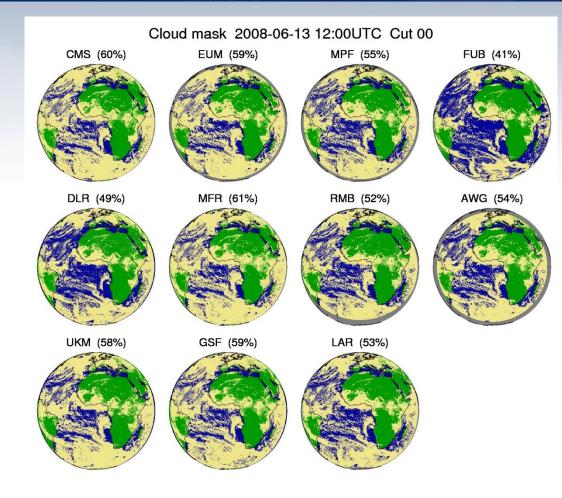
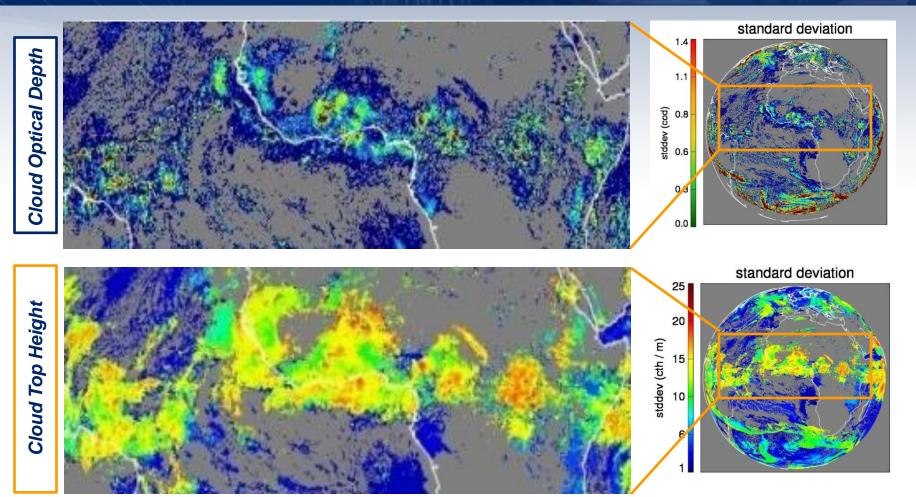



Fig. : Cloud masks of 11 MSG algorithms (13 June 2008, 12 hr UTC)

Multiple Algorithm Ensemble plots

Fig. : Examples of Multiple Algorithm Ensemble plots for the *Cloud Optical Depth* (upper panel) and *Cloud Top Height products* (lower panel).

Inter-algorithm consistency

Cloud Optical Depth MODIS/AQUA for June 13, 2008 13:55



Fig. : Comparison of MODIS COD and CTH retrievals from three algorithms, i.e.: AWG, GSF, and LAR

Inter-sensor consistency DCOMP PATMOS-x

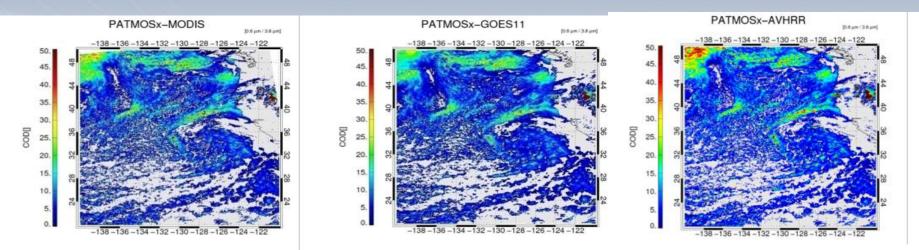
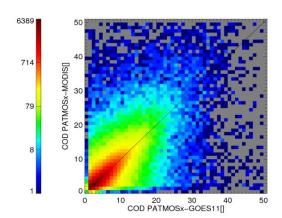



Fig.: MODIS, GOES and AVHRR retrievals of COD using the AVG algorithm. bias: -0.46 cfkt: 0.60

Matching method:

10 minutes time difference threshold, sampled to a 0.05 lat/lon grid corresponding to approx. 5 km for this latitude range.

Result:

[0.6 µm / 3.8 µm]

Low bias in comparison with other sensor PATMOS-x retrievals.

Comparison against Calipso/Cloudsat: Cloud Top Heights

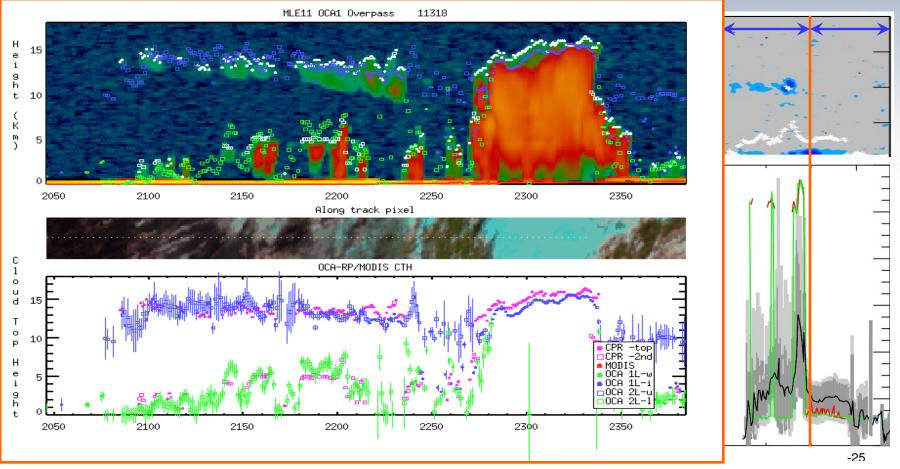
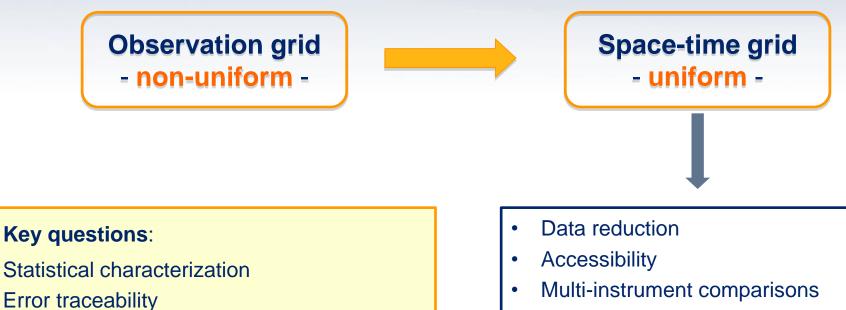


Fig. : Comparison of Calipso, Cloudsat and SEVIRI mean cloud top heights. The grey areas indicate the min/max of 7 SEVIRI retrievals (CUT-05)

Courtesy of Phil Watts, Eumetsat, Germany


Traceability and Uniformity of Level-3 products

Introduction: Level-3 data

Limit on number of observations per cell

Why grid data?

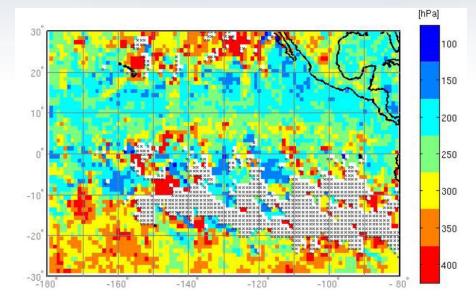
- Time series analysis
- Large scale geophysical analysis

Courtesy of Nadia Smith, University of Wisconsin, USA

Correlation in grid space

Level-3 Products: Sensitivity to cloud mask

		Cloud	l Optio	al De	pth	Cloud Optical Depth				
		Indivi	dual C	loud M	lask	Common Cloud Mask				
	Group	Mean	25%_P	Medi	75%_P	Mean	25%_P	Medi	75%_P	
	CMS	6.27	1.13	2.99	7.12	9.08	2.71	(5.27)	10.38	
	OCA	5.67	1.46	2.95	6.43	7.69	2.57	4.59	9.14	
	DLR	6.77	1.30	3.00	6.75	7.35	2.40	4.40	8.25	
	RMB	15.94	2.36	5.83	13.73	14.94	4.38	7.91	15.05	
	UWM	4.63	1.30	2.76	5.79	6.75	2.83	4.78	8.56	
	UKM	10.41	1.86	4.07	9.43	10.31	3.30	5.85	11.54	
	GSF	3.24	0.35	1.53	4.20	5.01	1.23	3.13	6.39	
>	LAR	7.85	1.20	3.22	8.01	10.20	3.01	5.53	11.31	
		Effe	octivo	Dadiu	Effective Padius					


		Effe	ective	Radius	5	Effective Radius					
	1	Individual Cloud Mask					Common Cloud Mask				
	Group	Mean	25%_P	Medi	75%_P	Mean	25%_P	Medi	75%_P		
\longrightarrow	CMS	13.08	7.89	8.29	18.08	13.77	7.69	8.89	21.47		
	OCA	19.94	6.10	10.44	34.31	19.92	5.70	8.76	39.17		
	DLR	11.64	5.99	6.49	14.73	12.51	5.99	5.99	14.98		
	AWG	17.83	10.41	14.95	21.76	13.19	8.06	11.03	17.60		
	UKM	15.84	6.79	14.43	22.28	13.87	5.92	11.58	20.71		
	GSF	23.14	11.32	18.67	28.19	21.61	9.99	17.17	27.31		
\rightarrow	LAR	19.72	10.09	15.58	26.02	18.01	8.89	12.18	25.42		

Level-3 Products: Sensitivity to viewing geometry

Fig. : Gridding using all viewing angles

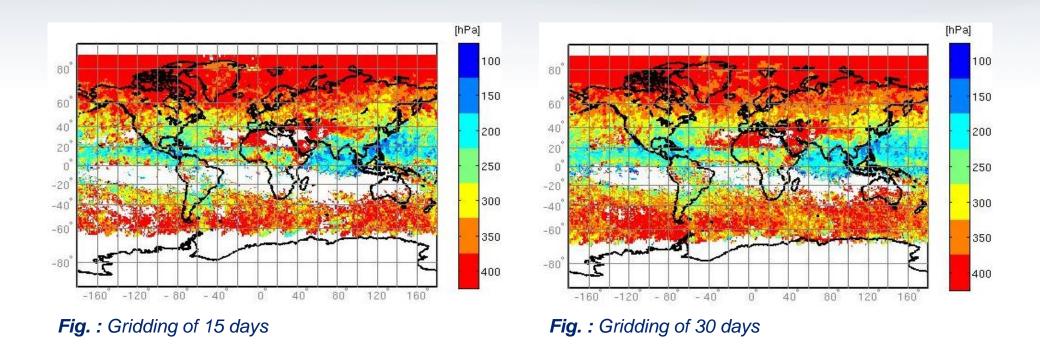
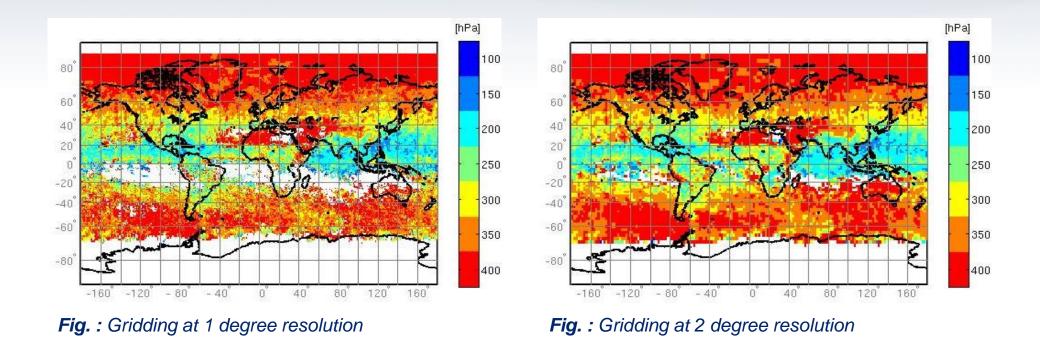


Fig. : Gridding using viewing angles < 32 degrees

Courtesy of Nadia Smith, University of Wisconsin, USA


Level-3 Products: Sensitivity to sampling period

Courtesy of Nadia Smith, University of Wisconsin, USA

Level-3 Products: Sensitivity to grid size (degrees)

Courtesy of Nadia Smith, University of Wisconsin, USA

Conclusions and Recommendations

Conclusions

Level-2

• Large differences between cloud masks (instantaneous difference up to 20%);

- Passive imagers underestimate CTH relative to Cloudsat and Calipso.
- Best agreement for homogeneous water clouds, whereas larger differences for multiple layer and broken clouds;
- For homogeneous thick ice clouds good agreement for CTH, but fair agreement for IWP and particle size;

Level-3

- Instrument-independent gridding approach are being developed to reduce differences in Level 3 products;
- Zonal statistics are parameter specific, i.e. cloud parameters are not all treated the same. This leads to more meaningful analysis;
- Gridding needs to be tested for cloud retrievals from other instruments and algorithms, and analysed for global time-series.

Recommendations

- Increase focus on detection and analysis of multiple layer clouds;
- Increase our skills of cloud property retrievals from infrared observations;
- Increase our understanding of the **microphysical properties of ice cloud models** used to retrieve cloud parameters from visible and shortwave infrared observations;

- Accommodate a common standard for generating global gridded (Level 3) cloud climatologies;
- Coordinate activities to improve traceability and uniformity in data products;
- Establish Working Groups and enhance the collaboration on the topics: *Cloud Vertical Placement; Cloud Physical Properties; Cloud Climatologies*;
- Plan biannual meetings.

Next workshop: Grainau, Germany in 2013 or 2014

R. Roebeling, B. Baum, R. Bennartz, U. Hamann, A. Heidinger, A. Thoss, and A. Walther, 2012: THE THIRD CLOUD RETRIEVAL EVALUATION WORKSHOP (submitted to BAMS)

Where to get the data?

More information on Wiki site:

http://www.icare.univ-lille1.fr/crew/

Common Data Base on FTP site:

- Input files (reflectances and angles) MSG/MODIS golden days
- Input files (reflectances and angles) simulator
- Output retrievals participating groups golden days
- Output retrievals participating groups simulator
- Communication of results

ftp://ftpush.icare.univ-lille1.fr/crew/

CREW acknowledges Jerome Riedi (Univ. Lille, France) for providing infrastructure for website and common database

Thank You

Any Questions?

