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1. Introduction
An active accretionary wedge is formed from sediments accreted 
continuously at a continental margin by a subducting plate and 
mechanically characterized by a plane-strain compressive frictional �ow 
throughout its entire volume (Figure 1). Continuous deformation induced by 
incoming sediments raises the distortional stress eventually leading to an 
ultimate condition known as a critical state. According to the critical taper 
theory (Davis et al., JGR, 1983), the angle of wedge increases as the 
incoming materials are accreted into the wedge until it reaches a critical 
value where the shear force on the basal detachment is in equilibrium with 
the basal friction. Under this concept, we applied the plastic slip-line theory 
for the computation of stress and velocity �elds throughout the    
continuously deforming area of the wedge. For the simplicity, we assumed 
that the tapered wedge overlying a basal décollement fault is described by a 
perfectly plastic rheology complying with the Coulomb failure criterion and 
the associated �ow rule. A complete description of soil rheology at the 
critical state requires the determination of stress tensors and velocity 
vectors at given points within the deforming region. For the boundary 
condition of stress, the e�ective normal and shear tractions on the upper 
surface of wedge are equal to zero, and thus the maximum principal stress 
acts parallel to the surface. 

3. Governing equations 
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2. Conceptual model of accretionary wedge

4. Slip line analysis 

6. Results

The wedge angle (δ and η) is dependent both on the internal and sliding 
friction coe�cients (µ and µb). The pore pressure within the wedge and the 
décollement fault has no e�ect on he accretionary wedge angle. The 
formation of sediment basin on top of the active accretionary wedge leads 
to the stress relaxation in the region below the basin.
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Equilibrium equations in x-y coordinate system
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Introduction to a new coordinates denoted by α and β with their directions that 
align the potential failure surfaces.Two characteristics (α, β) for the two 
equilibrium equations are defined by

           

The two characteristics defined in the above equations represent the two failure 
planes on which the failure criterion is satisfied. This is why they arealso termed 
slip lines or shear lines. 
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Equilibrium equations at critical state in terms of (p, θ)

 )tan( µθ ±=
dy
dx

Figure 1

Figure 2

Figure 3

5.  Computation method 
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Computation procedure
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A complete stress vector at a point is de�ned as p=[x, y, p’ , θ]T. From the 
stress boundary conditions at the sea�oor (σ3=0 and θ=δ+90o) and the 
Mohr-Coulomb criterion, we can determine the stress vectors at points A, B, 
C and D. As shown in Figure 4,  new stress vectors  at points A’, B‘ and C’ can 
be determined by the intersections of the conjugate stress characteristics (α- 
and β-lines; potential slip lines) derived from the governing equations for 
stress �elds. Using the same procedures, we can obtain the stess vectors at A” 
and B” and further points. After the stress solution is yielded at each 
intersection point, the velocity vectors can also be determined by the same 
procedure using the boundary condition of the velocity of incoming 
sediments obtained from the velocity of subducting plate or GPS data.
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