Towards an experiment to investigate N₂O₅ uptake to aerosol particles at ambient conditions using the radioactive tracer ¹³N

G. Gržinić, T. Bartels-Rausch, M. Birrer, M. Ammann Laboratory of Radiochemistry and Environmental Chemistry Paul Scherrer Institute. CH-5232 Villigen PSI. Switzerland

INTRODUCTION

 $N_0Q_{\rm e}$ is an important atmospheric trace gas that plays a significant role in **nighttime tropospheric** chemistry [1]. The importance of N_2O_5 stems from its role as a NO₂ radical reservoir and a major sink for NO, species thanks to heterogeneous loss processes. This leads to a reduction of tropospheric ozone and lowering of the oxidizing capacity of the troposphere [1, 2]. Laboratory studies have also shown that uptake of N2O5 to aerosol particles depends on meteorological parameters like temperature and relative humidity as well as aerosol composition [1, 2].

EXPERIMENTAL

In our experiments the short-lived radioactive tracer ¹³N technique (PROTRAC) [3] developed at the Paul Scherrer Institute was coupled to an aerosol flow tube reactor. This method allows for the study of N₂O₅ uptake kinetics under realistic conditions but should also allow to observe behavior in a wide temperature range (tropospheric conditions) and the influence of concentration effects (nitrate effect).

PAUL SCHERRER INSTITUT

Fig 1: PROTRAC facility at PSI

Fig 2: Schematic representation of the experimental setup

¹³NO produced at the PROTRAC facility is mixed with non-labeled NO and O₂ in the reactor, where N_2O_5 is synthesized. The ¹³N labeled species formed are trapped inside a narrow parallel plate diffusion denuder system, which allows for a selective separation of the gaseous species present. The aerosol particles are trapped on a particle filter located at the exit of the denuder system. Activity of the ¹³N labeled species deposited on the denuder plates and particle filter is monitored via scintillation counters.

FIRST RESULTS

In order to optimize N₂O₅ production, study concentration and temperature dependence and evaluate potential problems that might arise (eq. N₂O₅ formation time vs. half-life of ¹³N), N₂O₅ gasphase formation was modeled in Matlab.

Several denuder coatings for N₂O₅ were tested and citric acid was selected because of its lower interference with NO₂.

A comparison of modeled vs. measured N₂O₅/NO₂ ratios has shown that the values are of the same order of magnitude. The differences can be attributed to radioactive decay and larger then predicted wall loss.

11.

goran.grzinic@psi.ch

Fig 4: Modeled and measured N₂O₅/NO₂ ratios

A preliminary study using a citric acid aerosol at relative humidities of 50-80% RH has shown uptake of radioactively labeled N₂O₅ on the aerosol particles. First results obtained from a limited data set show an **uptake coefficient** γ in the order of **10**⁻³.

SUMMARY

- ¹³N labeled N₂O₅ has been produced for the first time using ¹³NO produced at the PROTRAC facility at PSI
- Gas-phase formation of N₂O₅ in the flow reactor has been successfully modeled in Matlab and the model has shown good accordance with experimental observations
- Uptake of ¹³N labeled N₂O₅ on citric acid aerosol has been observed

REFERENCES

[1] Chang, W. L., et al., Aerosol Sci. Technol., 45, 665-695 (2011).

- [2] Finlayson-Pitts, B. J., and J. N. Pitts, Jr., Academic Press, San Diego, CA (2000).
- [3] Ammann, M., Radiochim. Acta, 89, 831-838 (2001).

This work is supported by the Swiss National Science Foundation (grant no. 130175)