

Results:

- Silicate Bunter sandstone decreased samples show rock strength under enhanced pore fluid pressure (from 60% to 80% σ_3 ; Fig. 3 A).
- dependency OŤ fluid composition chemical confining pressure and (lithostatic) on the maximum differential stress (effective stress) especially on carbonate sandstones (Fig. 3 B) is obvious according to the experimental results.

Fig. 3: Differencial stress diagrams showing the influence of rock saturation, confining pressure (σ_3), pore fluid composition (CO₂) with SOx and NOx) and pore fluid pressure (p) on the maximum effective stress $\sigma_1' - \sigma_3'$ ($\sigma_1' = \sigma_1 - p$; effective confining pressure σ_3' $= \sigma_3 - p$) for silicatic (A) and carbonatic bound (B) Bunter sandstones. The differently coloured polygons connect sample points of equally pore fluid chemistry. A total confining pressure of 25 MPa corresponding 1000 m reservoir depth.

- **Decrease of rock deformability** (strain softening) due to the alteration with pure $scCO_2$ (Fig. 4).
- Increase of rock deformability (strain hardening) during the alteration under the influence of CO_2 + 1000 ppm SO_x (Fig. 4).

the pore fluid chemical composition

The effects of impure CO₂ on reservoir sandstones: results from mineralogical and geomechanical experiments

Herwig Marbler, Kirsten P. Erickson, Michael Schmidt, Christof Lempp, and Herbert Pöllmann Martin-Luther-University Halle Wittenberg, Von-Seckendorff-Platz 3, D-06120 Halle/Saale <u>herwig.marbler@geo.uni-halle.de</u>

1: The experimental samples ere controlled altered in a pore fluid. samples

Project and Methodology:

Within the German project COORAL* the behaviour of potential reservoir rocks during the injection and geological storage of CO_2 with inherent impurities such as SO_x and NO_x is studied in laboratory experiments. A combination of geochemical and geomechanical studies are performed as autoclave experiments and subsequent tests in a triaxial pressure cell with dry and brine saturated sandstone samples. For a comparative study controlled altered rock samples (with supercritical (sc)CO₂ + SO_x + NO_x in an autoclave system) were loaded in a triaxial pressure cell under in-situ PT-conditions (Fig. 1), to study changes of the mineralogical, geochemical and geomechanical rock properties. Working materials are sandstones of possible reservoir formations of the North German Basin (Fig. 2).

B

<u>0</u> -11

deformation) of silicate sandstone samples due to CO₂-alteration and

- **Contents of dissolved metals** in the reaction fluid during alteration the autoclave experiment depends on the impurities $(SO_x \text{ and } NO_x)$ in the CO_2 gas stream (Fig. 5 A).
- Dissolution rates (Fig. 5 B) of bulk rock (sandstones) as well of single minerals varies with the carbonate fraction. Rates calculated are according to the formula:

dmi $d_t = A_s \cdot M_s$

r : dissolution rate (mol $m^{-2} s^{-1}$) A_s : inner surface (BET) (m²/g) *m_i*: molar concentration *t* : time (s) V: fluid volume (I) M_s : mass (g)

Conclusions:

The project "COORAL" ("CO2 Purity for Capture and Storage") is supported by the German Federal Ministry of Economics and Technology on the basis of a decision by the German Bundestag (grant ID: 032779D). Third-party funding: Alstom, EnBW, EON, Vattenfall Europe, VNG.

CO2+NO CO2+S ----CO2+NC carbonate sst. (100 C) silicate sst. (100 C) 🔺 carb./silicate sst. (100 C labradorite (80 C) 0 siderite (80 C) calcite (80 C) Fig. 5: Development of chemical fluid composition during alteration experiments on silicate sandstones

(A); dissolution rates of bulk sandstone types and single minerals (**B**)

• The strength behaviour of different types of sandstones varies with the degree of sample saturation, the pore fluid pressure, pore fluid chemistry and temperature.

• Various types of fluids cause different maximum differential stresses (effective stresses) at changing pressure conditions. This may be due to different pore space geometries and permeability. • Different impurities in the reaction fluids in the autoclave (pure $CO_2 + SO_x$ or NO_x) showing variable but generally increasing element dissolutions from the rocks (Ca, Si, Al, Ba) during the experimental course. • The experimental determined differences in rock strength and elastic deformability of altered samples demonstrates clear trends of chemically induced mechanical weakening of the studied sandstones.

B: Carbonate sandstone "Mid Bunter Sandstone" (lower Triassic; poro.: ~ 16%) **C:** Silicate and carbon. "Rotliegend sandstone" (lower Permian; porosity: ~ 8 %)

After exposure to brine and $scCO_2 + SO_x$ or NO_x in the autoclave, samples show alterations i.e. dissolution effects of the carbonatic cements and of single minerals (Fig. 6 A, B) and also secondary mineral precipitations (C, D).

LEO 1530 VP Date :8 Mar 2012 ZWL

Fig. 6: SEM-images of silicate and carbonate bound Rotliegend sandstone samples after the treatment with brine and $scCO_2$ + 500 ppm NO_X in the autoclave. Images **A** and **B** shows dissolution effects on the carbonate matrix and **C** and **D** demonstrate secondary calcite precipitation axe-orientated on dissolved calcite tops (C) and on a carbonate surface (**D**).