

Three different models were tested for the computation of the near-bank shear stress: the empirical distribution from Simon and Senturk (1977), the computing scheme of the River2D hydrodynamic model, and the analytical model from Kean and Smith (2006a).



# A comparison between riverbank erosion models with an evaluation of the risk

# Laura Nardi, Lorenzo Campo

Dipartimento di Ingegneria Civile, University of Florence, E-mail: *lcampo1 @dicea.unifi.it*,

| STEP 1: DATA COLLECTION                                                                        | GPS, Grain size distribution,<br>CSM, Bank roughness                                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| STEP 2: HYDRODYNAMIC MODELLING<br>Q: $5 \Rightarrow 671.2 \text{m}^3/\text{s}$                 | - 1D Model → 2D. Mode                                                               |  |  |  |  |  |
| STEP 3: NUMERICAL IMPLEMENTATION                                                               | Near-bank shear stress<br>(KEAN AND SMITH, 2006)                                    |  |  |  |  |  |
| STEP 4: NEAR-BANK SHEAR STRESS<br>ANALYSIS AND ERODIBILITY<br>PARAMETERS CALIBRATION           | → Comparison of results from<br>models and calibration of<br>erodibility parameters |  |  |  |  |  |
| STEP 5: COUPLING FLUVIAL EROSION<br>AND BANK STABILITY ANALYSIS<br>(at 2 representative banks) | River2D-K&S<br>+ BSTEM                                                              |  |  |  |  |  |
| STEP 6: FRAMEWORK FOR FLUVIAL                                                                  | Excess shear stress<br>(Partheniades 1963)                                          |  |  |  |  |  |

INPL

| Sectior |
|---------|
| M1      |
| M1      |
| M1      |
| M1      |
| V1      |
| V1      |
| V1      |
| V1      |
|         |





## 3. Calibration of erodibility parameters

A calibration of the models was performed basing on observations from aerial photos on the region in a period of ten years (1994-2004) and the results of the different combination of the models are discussed and compared.

| JT | DATA |  |
|----|------|--|
|    |      |  |

1. Measured bank retreat (GIS on aerial photos)

2. Flow events between 1994-2004

Step Hydrograph

Shear stresses along the bank for each discharge in the hydrograph and for each hydr. model

 $\varepsilon = k_d (\tau - \tau_c)^a$  (Partheniades, 1963)



| 1994-2004 |                                                                                  |                  |                                    |                                    |       | 1994-2000 |       |             |                  |                                    |                                    | 2000-2004 |         |       |              |                  |                                    |                                    |       |
|-----------|----------------------------------------------------------------------------------|------------------|------------------------------------|------------------------------------|-------|-----------|-------|-------------|------------------|------------------------------------|------------------------------------|-----------|---------|-------|--------------|------------------|------------------------------------|------------------------------------|-------|
| Hydr.     | Shear Stress                                                                     | t <sub>c_g</sub> | K <sub>d–c</sub>                   | K <sub>d—g</sub>                   | Error |           | Hydr. | Shear       | t <sub>c_g</sub> | K <sub>d–c</sub>                   | K <sub>d–g</sub>                   | Error     | Section | Hydr. | Shear Stress | t <sub>c_g</sub> | K <sub>d-c</sub>                   | $K_{d-g}$                          | Error |
| Mod.      | Mod.                                                                             | [Pa]             | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m]   | Section   | Mod.  | Stress Mod. | [Pa]             | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m]       | Section | Mod.  | Mod.         | [Pa]             | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m <sup>3</sup> Ns <sup>-1</sup> ] | [m]   |
| HR        | SS                                                                               | 5.61             | 5.07E-07                           | 1.07E-06                           | < 0.5 | M1        | HR    | SS          | 5.56             | 7.25E-07                           | 1.15E-06                           | < 0.5     | M1      | HR    | SS           | 5.74             | 4.05E-08                           | 1.08E-06                           | < 0.5 |
| HR        | KS                                                                               | 5.59             | 5.24E-07                           | 1.38E-06                           | < 0.5 | M1        | HR    | KS          | 5.41             | 6.70E-07                           | 1.54E-06                           | < 0.5     | M1      | HR    | KS           | 5.71             | 9.71E-07                           | 1.33E-06                           | < 0.5 |
| R2D       | R2D                                                                              | 5.67             | 2.42E-07                           | 6.85E-06                           | < 0.5 | M1        | R2D   | R2D         | 5.64             | 1.41E-07                           | 9.41E-06                           | < 0.5     | M1      | R2D   | R2D          | 5.67             | 7.54E-07                           | 5.92E-06                           | < 0.5 |
| R2D       | KS                                                                               | 5.65             | 4.04E-07                           | 2.75E-05                           | < 0.5 | M1        | R2D   | KS          | 5.61             | 1.01E-08                           | 4.59E-05                           | < 0.5     | M1      | R2D   | KS           | 5.64             | 3.02E-07                           | 2.17E-05                           | < 0.5 |
| HR        | SS                                                                               | -                | -                                  | -                                  | -     | V1        | HR    | SS          | 4.96             | 6.78E-08                           | 3.54E-07                           | < 0.5     | V1      | HR    | SS           | 29.13            | 2.89E-07                           | 3.53E-07                           | < 0.5 |
| HR        | KS                                                                               | 4.39             | 2.89E-08                           | 6.47E-07                           | < 0.5 | V1        | HR    | KS          | 4.56             | 2.92E-07                           | 2.25E-06                           | < 0.5     | V1      | HR    | KS           | 8.01             | 7.36E-08                           | 1.26E-07                           | < 0.5 |
| R2D       | R2D                                                                              | -                | -                                  | -                                  | -     | V1        | R2D   | R2D         | 2.72             | 7.22E-07                           | 2.57E-04                           | < 0.5     | V1      | R2D   | R2D          | 4.5              | 1.12E-07                           | 3.72E-06                           | 1.06  |
| R2D       | KS                                                                               | 4.09             | 2.58E-07                           | 7.06E-05                           | < 0.5 | V1        | R2D   | KS          | 4.23             | 5.03E-07                           | 2.93E-04                           | < 0.5     | V1      | R2D   | KS           | 4.28             | 4.28E-07                           | 9.03E-06                           | < 0.5 |
|           | HR=HEC-RAS; R2D=River2D; SS=Simon and Senturk (1977); KS= Kean and Smith (2006a) |                  |                                    |                                    |       |           |       |             |                  |                                    |                                    |           |         |       |              |                  |                                    |                                    |       |

### 4. Evaluation of the risk

A framework was developed for risk analysis of land loss due to bank erosion, and an application to the study case is provided by using the results of fluvial erosion modeling.



Location of bank M1 at the study reach

I. Computation of Flow duration curve  $\varepsilon = k_d (\tau - \tau_c)^a$ IV. Computation of *local loss duration curve* r 1 year  $\boldsymbol{R} =$ Ldt





| Riverbank retreat |                                  |              |  |  |  |  |  |  |  |
|-------------------|----------------------------------|--------------|--|--|--|--|--|--|--|
| Frame-Time        | M1 [m]                           | V1 [m]       |  |  |  |  |  |  |  |
| 1994-2000         | $11\pm2.1$                       | $12.5\pm2.1$ |  |  |  |  |  |  |  |
| 2000-2004         | $19.5\pm1.5$                     | 1 ± 1.5      |  |  |  |  |  |  |  |
| 1994-2004         | $\textbf{30.5} \pm \textbf{1.3}$ | 13.5 ± 1.3   |  |  |  |  |  |  |  |



II. Estimation of near-bank shear stress for each value of discharge

III. Application of fluvial erosion model for each value of bank shear stress

L (LOSS)= Bank retreat x Price of land [€/m·day]