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Interpretation of karst spring signals

One of the key guestions in the field of karst hydrogeology
concerns the relationship between the variability in the signals at
karst springs and the physical structure of the aquifer.

Shuster and White [1971] used chemical and thermal variability to
classify karst aquifers into two types: diffuse systems, which
display little variation in total hardness, and conduit systems,
which display large variations in total hardness.

However, there has been significant discussion about this
terminology and the root causes for the presence or lack of
variations...others have suggested that most of the differences
In responses could be accounted for by considering the
fraction of recharge from autogenic versus allogenic sources
[Newson, 1971; Worthington et al., 1992]. Worthington et al. [1992]
showed that some systems known to contain large conduits
displayed little variability, suggesting that the terms “diffuse” and
“conduit” might not be appropriate.

(text modified from Covington et al., 2012, J. Geophys. Res.)



Two typical approaches to understanding spring signals

Statistical, black box, and Process-based numerical
time series analysis of simulations of signal
observed signals transport
Strength: broadly applicable Strength: direct connections to
to field data from a wide variety physical processes and aquifer
of settings. Few parameters. structure.
Weakness: connections to Weakness: computationally
aquifer structure and physical expensive, and many unknown
process are frequently uncertain parameters.
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A general theory for spring responses?

Metrics and analytical solutions developed from process-based analysis




Process Length Scales:
A simple idea with many potential applications

Two requirements:

1. A process that occurs over a particular time scale
| I

) ——= (D

2. Flow that carries the process down a conduit

(water or air)

(Covington et al., 2012, J. Geophys. Res.)



A characteristic length scale emerges

Characteristic length scale

Length = (Time Scale) X (Flow Velocity)




Does a given process allow variations at a spring?

Process Length (\p)

| L |
| |
Input = Processing—— Equilibration

Weak Process Limit (A=L/\y<<1)
Recharge) (M\N\‘/. Discharge )
Negligible modification

Strong Process Limit (A=L/A\,>>1)

Effective equilibration

(Covington et al., 2012, J. Geophys. Res.)



Conductivity Signals:
Dissolutional Length Scales
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Longitudinal profiles of concentration are exponential, with e-folding length, A.

(Covington et al., 2012, J. Geophys. Res.)
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Propagation of Thermal Signals

Analytical solution for temperature profile including 1D conduction

T (x*,t") =T H(t" — a%)er fc

Taylor Series approximation of thermal length scale

. T2UARAV2 U2 R2Y/2 T2 R2YV
AT cona(t”) ~ 6402 T Aoy, L)~ Sav.

(Covington et al., 2012, J. Geophys. Res.)
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Simple Conduit Network

Input S'. The “transmission fraction,” F,

Is related to process length
scale

Ingut Input

4 S .3

(Covington et al., 2012, J. Geophys. Res.)



Simple Conduit Network
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(Covington et al., 2012, J. Geophys. Res.)



Response of Linear Conduit Networks

Individual conduit segment

F=transmission fraction (fraction of input that is transmitted)

Response of linear/linearized networks

inputs inputs
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Continuous representation using recharge distribution function, ®r
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(Covington et al., 2012, J. Geophys. Res.)



Response of Conduit Networks

Physical Interpretation:
factors that control signal amplitude

1. Input signal amplitude

2. The capability of individual flow paths to transmit
or dampen the signal

3. The distribution of flow among paths with different
transmission factors




Response of Conduit Networks

Physical Interpretation:
factors that control signal amplitude

1. Input signal amplitude

2. The capability of individual flow paths to transmit
or dampen the signal

3. The distribution of flow among paths with different
transmission factors




Response of Conduit Networks

Physical Interpretation:
factors that control signal amplitude

1. Input signal amplitude

2. The capability of individual flow paths to transmit
or dampen the signal

. The distribution of recharge among paths with
different transmission factors
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* Process length scales provide a quantitative tool for understanding signal transport
along single flow paths.

* For conduit networks, one can consider the transmission fraction, Fpath, of individual
network segments or entire input-output paths. In the case of linear networks, results
are easily extended from the segment to the network scale.

* In linear conduit networks, the recharge distribution function, ®r, as a function of
transmission fraction, Fpath, provides a general framework for understanding network
response. @r subsumes previous explanations of the presence or lack of spring
variability, such as diffuse vs. conduit flow systems, or the nature of recharge.

Open questions

*What does ®Pr really look like in karst aquifers? Are there strong correlations with
hydrological, geological, or speleogenetic factors?

* To what extent does linear network theory apply to real systems? Do non-linearities
lead to qualitatively different types of behavior?



A Simple Rule of Thumb

A pulse is damped if its
duration is shorter than the
flow through time.
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(Covington et al., 2012, J. Geophys. Res.)
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