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Adapting FAO-56 Spreadsheet Program to 
estimate olive orchard transpiration fluxes 

under soil water stress condition



Introduction 

The quantification of crop water requirements of irrigated land is crucial in 
the Mediterranean regions, characterized by semi-arid conditions. 

The knowledge of the actual transpiration fluxes allows to correctly 
estimate the crop water requirements and to dispose of irrigation 
management strategies aimed to increase water use efficiency.  

Physically based agro-hydrological models, although very reliable, in 
relation to the high number of variables and the complex computational 
analysis, cannot often be used. 

The use of simplified agro-hydrological models may therefore represent a 
useful and simple tools for irrigation scheduling.



FAO-56 Agro-hydrological Model 
(Allen et al., 1998)
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FAO-56 Agro-hydrological Model 
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FAO-56: Water Stress Function

The water stress coefficient Ks is used to reduce Kcb under conditions of water or salinity stress. 
For the i-th depletion value Di > RAW:

TAW=total available soil water in the root zone (mm) 
p=fraction of TAW that a crop can extract from the root zone in absence of water stress. 
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Crop water stress models
Modified Feddes

Homaee (1999)
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The main objective of the work is to assess the suitability of FAO-56 
spreadsheet program to simulate table olive water requirements under soil 
water deficit conditions.

On the basis of the differences between measured values of soil water 
contents and actual transpirations with the corresponding simulated by the 
original version of the model, an amendment is suggested to consider a 
more realistic shape of the water stress function, as obtained by Rallo et al. 
(2011).

Objectives



Experimental layout

SIAS weather station

Soil water content

125 m

Sap Flow

Farm “Tenuta Rocchetta”

Lat. 37 °38’ 36,8”

Long. 12° 50’ 49,8”

Extension: 30 Ha

Crop: Table Olives

8 x 5 m (250 plant/Ha)

Fraction coverage: 0.35

Soil: Clay-Loam (USDA)

Irrigation: four 8 l/h drip/plant

Years of monitoring: 2009, 2010 
and 2011



Preliminary analysis
Evaluation of van Genuchten 
parameters of the SWRC

Calibration of FDR sensor
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van Genuchten parameters 
θr θs α n  m Z 

[cm] 
ρb 

[Mg m-3]
[cm3 cm-3] [cm3 cm-3] [cm-1] [-] [-]

0 1.36 0.05 0.39 0.008 1.32 0.24
30 1.31 0.05 0.56 0.0147 1.19 0.16
60 1.38 0.06 0.39 0.0138 1.23 0.18

100 1.61 0.06 0.36 0.0223 1.18 0.15

θ  = 38.225 SF 3.4918

R2 = 0.92
RMSE: 3.4 [% vol.]



Soil water content measurements
FDR (Frequency Domain Reflectometry)

TDR (Time Domain Reflectometry)

Five 1.0 m access tubes were installed where 
the maximum root water uptake occurs after 
irrigation. 

Measurements were manually carried out every 
10 cm,  weekly, before and after irrigation.

Nine TDR probes were horizontally installed 
along three profiles at 15, 45 and 70 cm depth. 
A Campbell TDR100 was used and 
measurements of SWC were stored into a 
CR1000 datalogger every 3 hours. 



Thermal Dissipation Probe

Sap flow measurements

Integration of sap fluxes at a daily scale, allowed to determine actual 
transpiration as the volume of water consumed by a single plant, assuming 
negligible the effect of the tree capacitance related to the  
increasing/decreasing water stored in the leaves, branches and trunk. 



Evaluation of the maximum root depth (Zr) where 80% of the roots are localized (DP80 )
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Results: Simulations with original FAO-56
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The original model overestimates SWC because the linear water stress function does 
not reproduce correctly the root water uptake ability. In fact, for each fixed SWC the 
actual value of Ks coefficient results higher than the corresponding simulated value, 
and therefore, during stress periods, despite the higher simulated SWC, the model 
underestimates Ta .



Water Stress Function
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Rallo, G., Agnese, C., Minacapilli, M. and Provenzano, G. 2011. Modelling eco-physiological response of table 
olive trees (Olea Europaea L.) to water stress. Submitted for publication on Agricultural Water Management. 

θ* = 0.16 cm3 cm-3

θmin

 

=0.08 cm3 cm-3

θmin was assumed as the minimum θ measured at the end of the cropping 
season, in place of the wilting point, as suggested from Trambouze and 
Voltz (2000), to take into account the real ability of the crop to extract water 
from the soil. 
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Simulations with modified FAO-56
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A better performance can be obtained when a more realistic 
stress function is implemented in the model. In fact, SWCs 
in dry periods tend to decrease more than in the original 
version, becoming similar to the measured values. The 
enhanced root water uptake ability also determines a 
significant improvement of actual transpiration estimation.

 Ta SWC 
 [mm d-1] [cm3 cm- 3]

ORIGINAL   
all investigated seasons 0.92 0.08 

2009 0.97 0.06 
2010 1.09 0.06 
2011 0.73 0.11 

MODIFIED   
all investigated seasons 0.58 0.07 

2009 0.44 0.04 
2010 0.73 0.04 
2011 0.52 0.09 

RMSE



Simulation with modified FAO-56
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Local discrepancies between simulated and measured Ta observed at the end of 
the dry period 2010 could be due to the persistence of SWC near to θmin. These 
differences can be consequent to the neglected contribute of tree capacitance on 
actual transpiration. Further investigation are necessary in order to improve the 
stress function under the most extreme water stress conditions. 

2010



Conclusions
•The suitability of FAO-56 agro-hydrological model to estimate table olive 
transpiration under soil water deficit conditions was investigated. 

•The performance of the model, in its original version, was verified by 
means of sap-flow and soil water contents measurements acquired 
during three years of field observations.

•On the basis of the differences between measured and simulated soil 
water contents and actual transpirations, an amendment was suggested 
in order to introduce a more realistic shape of the water stress function 
and the minimum soil water content corresponding to the highest level of 
crop water stress recognized in the field. In this way it was possible to 
take into account the roots uptake ability, as experimentally evaluated.

•The modified model allowed a general improvement of crop transpiration 
and soil water content estimation, even if further investigation are 
necessary to consider the role of tree capacitance on the water stress 
function. 



Thank you!
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