A Physical Modeling Study for the Suppression of Water Reverberations by Multi-depth Streamers Technique

Po-Yen Tseng¹, Chao-Ming Lin², Young-Fo Chang¹*, Chih-Hsiung Chang³, Li-Chung Sun⁴, Ruey-Chyuan Shih¹

¹Institute of Seismology, National Chung Cheng University, Chiayi, Taiwan, R.O.C. *Corresponding author
²Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan, R.O.C.
³General Education Center, National Chiayi University, Chiayi, Taiwan, R.O.C.
⁴Department of Electrical Engineering, Nan Kai University of Technology, Nantou, Taiwan, R.O.C.

EGU2013-3994

Ghost reflections and water reverberations are the major and inevitable seismic noises in marine seismic exploration. In this study, the data acquired by multi-depth streamers to suppress reverberations is proposed and evaluated by physical modeling.

Figure 1. Schematic diagram of the multi-depth streamers technique.

Figure 2. Physical model, apparatus, and recording geometry used in this study.
Figure 3. The common-source vertical-array gather (CSVA) with a horizontal offset 250 m and 1750 m.

Figure 4. The vertically stacked common-source horizontal-array gather (CSHA; black) and non-stacked one (pink) observed along the water surface. The S_1 and N_1 represent the maximum positive amplitudes of the primary reflections and reverberations in the non-stacked traces, respectively. And the S_2 and N_2 are for the vertically stacked seismic traces. The R_1 and R_2 represent the non-stacked S_1/N_1 ratio and vertically stacked S_2/N_2 ratio, respectively.

Figure 5. The CDP stacked trace (pink) and the vertical/CDP stacked trace (black).