

³⁹Ar groundwater dating of a coastal aquifer in the Nam Dinh Province, Vietnam

¹ University of Bern, Physics Institute, Climate and Environmental Physics, Switzerland (cgerber@climate.unibe.ch) ch), ² GEUS, Copenhagen, Denmark, ³ Hanoi University of Mining and Geology, Hanoi, Vietnam, ⁴ University of Bremen, Bremen, Germany * cgerber@climate.unibe.ch

Introduction

In the south of Nam Dinh Province, Red River Delta, Vietnam (fig. 1), fresh Pleistocene groundwater has been identified to exist next to brackish pore waters [1]. Extensive exploitation of the fresh water results in decreasing groundwater heads and migration of brackish water towards the freshwater [2].

the groundwater Dating of improves understanding of the dynamics and evolution of the aquifer and provides additional information on the origin of the salt (from paleowaters or recent intrusion).

Study Area

During the last glacial maximum, the Red River has carved out a valley, which has been filled with

sediments

during the

Figure 1: Location of the study area.

Pleistocene/Holocene marine ingression [3]. To the west and north of the delta, Triassic bedrock is cropping out.

The Pleistocene/Holocene aquifers are mostly recharged from the triassic limestone hills in the west and by local infiltration of (river) water through rice paddies [1].

Methods

13 boreholes (using a submersible pump) and 4 pumping wells were sampled for several environmental tracers.

Samples for ³He, ⁴He and ²⁰Ne analysis were collected in copper tubes.

For ³⁹Ar analysis the gas from 2000-3000 liters of water was extracted in the field from which Ar was purified in the laboratories of University of Bern. ³⁹Ar activities were measured by gas proportional counting [4]. Before purification, the gas composition was measured by a quadrupol mass spectrometer to determine the amount of CH_{4} in the gas.

Christoph Gerber^{1*}, Roland Purtschert¹, Flemming Larsen², Hoan V. Hoang³, Long V. Tran³, Luu T. Tran³, Nhan Q. Pham³, Jürgen Sültenfuss⁴

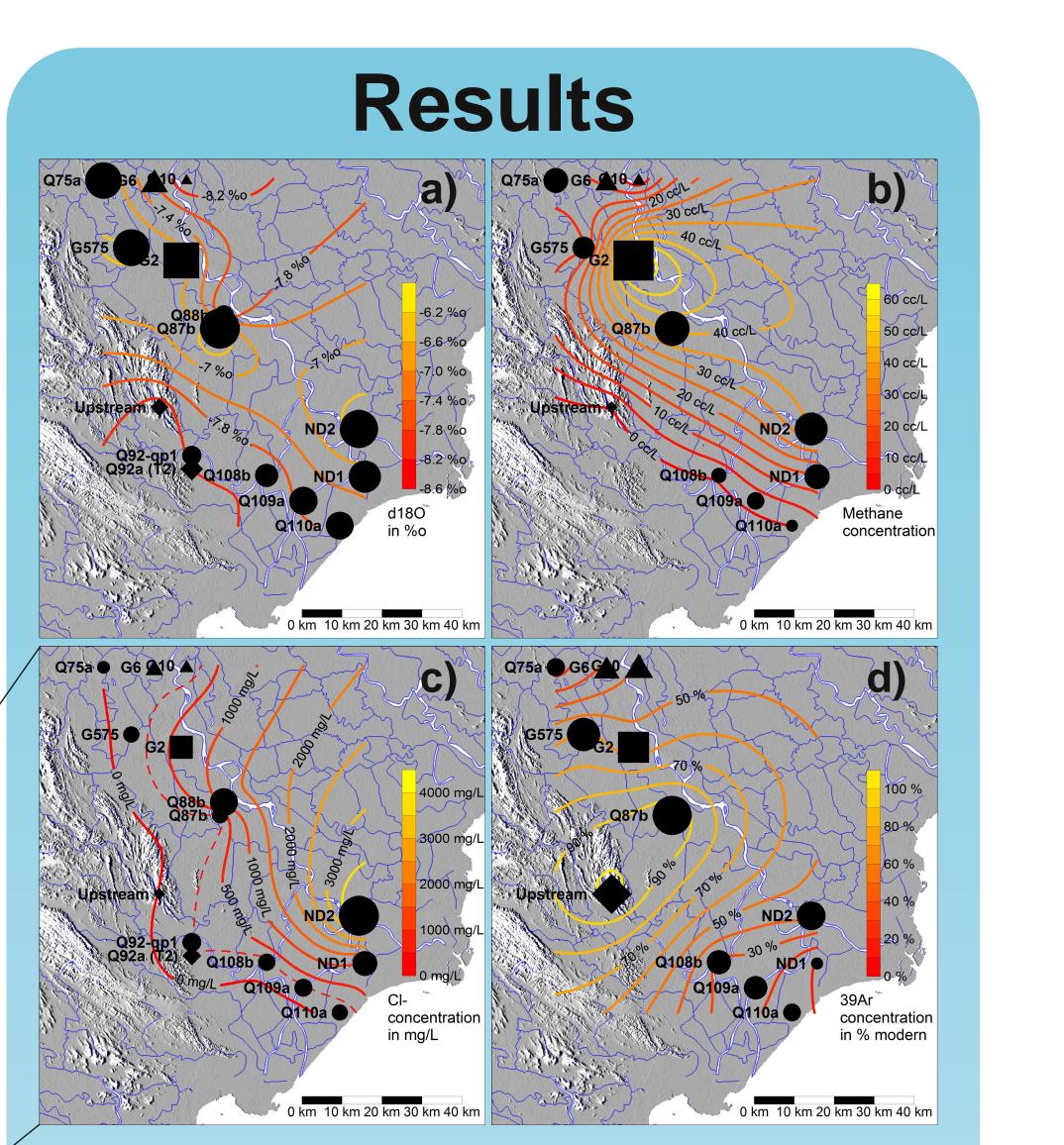
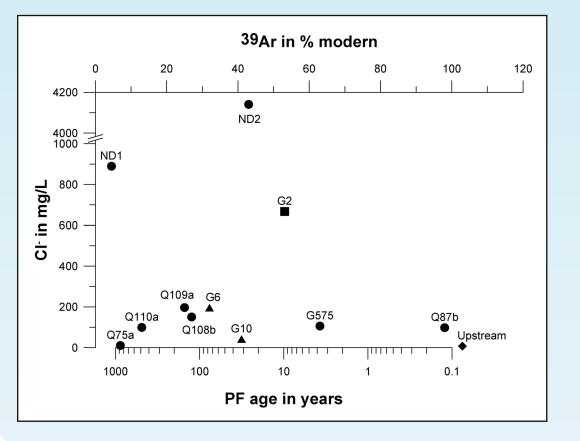



Figure 2: Spatial patterns of a) ¹⁸O, b) methane concentration, c) Cl⁻ concentration and d) ³⁹Ar activity for the study area. The symbol refers to the geologic unit: =Triassic, =Neogene, =Pleistocene, =Holocene. The size of the symbol is scaled with the value measured. The isolines were created using standard kriging.

The spatial pattern of ¹⁸O shows a clear distinction between wells in the north and east along the river and wells in the south and west, except for the deep Neogene wells A similar pattern is found in methane concentrations which are as high as $62 \text{ cm}^3/\text{L}$ ³⁹Ar activity shows that the youngest water is present in the western triassic hills, from where it is flowing southwards and probably also northwards. Pistonflow ages vary from modern (upstream, Q87b) to 1200 years (ND1)

The Cl⁻ concentration is higher along the river as well, but also shows a high local variability The stable isotopes of all samples are close to the local meteoric water line (not shown here)

Figure 3:

Cl-concentrations as a function of ³⁹Ar, which is an indicator of water age. For comparison: ocean water has a CI-concentration of about 19'000 mg/L. The symbols refer to the same geologic units as in fig. 2.

River

Discussion

Origin of the salinity

Fig. 3 shows no obvious correlation between groundwater age and chloride. Old and young water both show high and low chloride concentrations. This is in line with previous findings [1] where recent and ancient Clsources were identified in the area.

A closer look at the degassing process

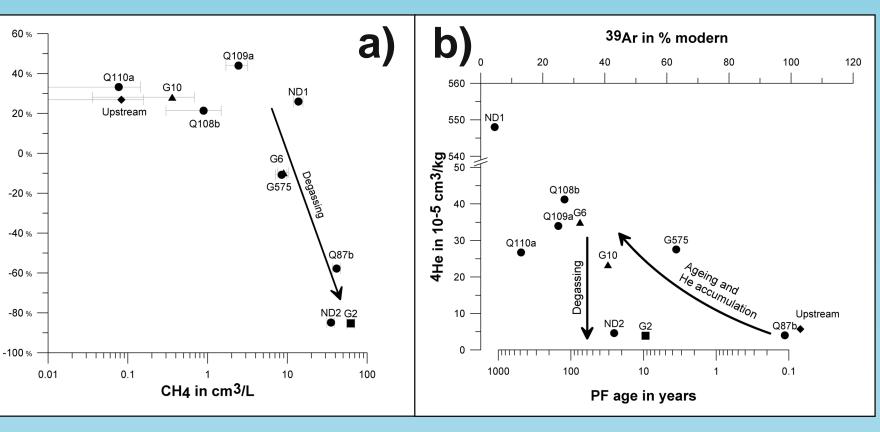
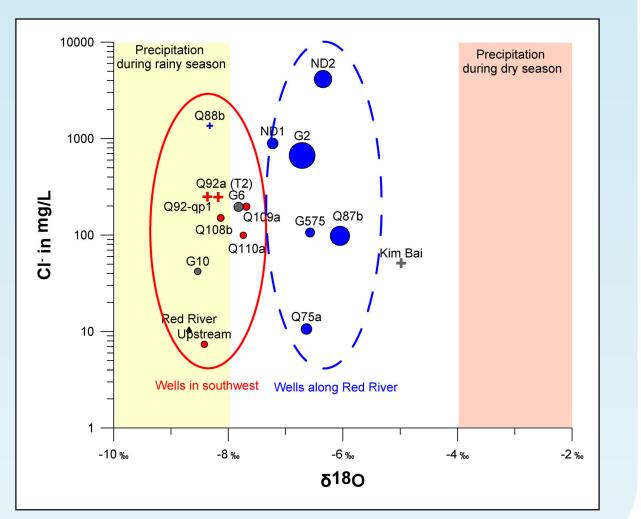


Figure 4: The two plots help to better understand the degassing process: a) Ne as a function of the methane concentration. b) ⁴He against ³⁹Ar (i.e. decreasing age) showing the accumulation of ⁴He over time. The most degassed samples show very low ⁴He concentrations.

Waters depleted in atmospheric neon Ne<0%) show elevated CH_4 concentrations suggesting a link between the two (fig. 4 a))


Degassing is diffusion dominated because degassed samples show the same ³He/⁴He ratio as samples with little CH₁ at a younger age (fig. 6)

There are two possible processes:

-Very fast degassing by methane bubbles forming in the well during sampling

-Slow diffusion towards the water table driven by the CH4 concentration gradient The older degassed waters show ⁴He concentrations as low as at infiltration (fig. 4 b)) Stable isotopes show no signs of evaporation or mixing with ocean water for the wells along the river which are enriched in ¹⁸O. The reason is more infiltration along the river during the dry season (fig. 5)

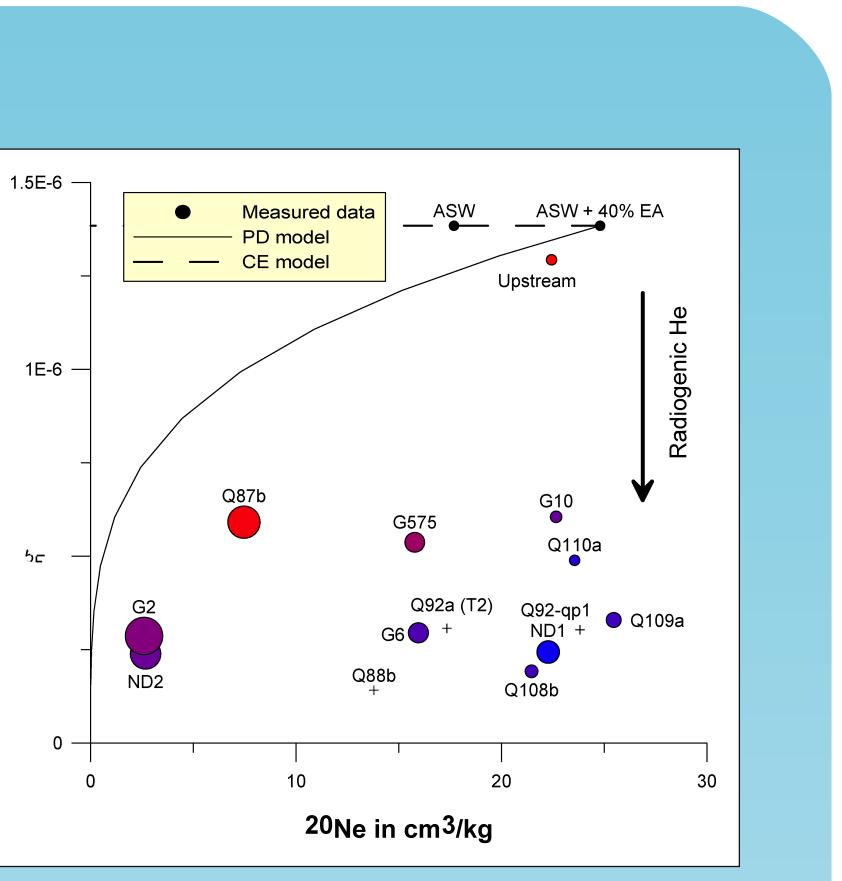

Figure 5: Wells located in the vicinity of the Red (blue) are enriched in ¹⁸O but not in Cl⁻ compared to wells in the southwest of Nam Dinh (red). Typical values for ¹⁸O in precipitation and the Red River are also shown. The size of the circles corresponds to the CH_{4} concentration. A cross means CH_4 was not measured.

Figure 6: ²⁰Ne against ³He/⁴He with the size of the circles corresponding to the CH₄ concentration of the samples and the color representing the ³⁹Ar activity (blue = lowest, red = highest). A cross means CH_{4} and ³⁹Ar was not measured. Shown is also air saturated water (ASW) and how groundwater will evolve starting from 40% excess air (EA) in case of solubility dominated degassing (CE model) and diffusion dominated degassing (PD model) [6].

Entwicklung, 2011 EGU2012-2273, 2012 Developing Science, IAEA, 2005

Conclusions

Groundwater residence times in the Nam Dinh province range from modern up to several hundreds and thousands of years Water in the southwest recharges in the triassic hills during the wet season

Groundwater along the river probably has more local recharge during the dry season

Local recharge or organic carbon in the sediments along the river are a source of CH₄

 CH_{A} leads to diffusion dominated degassing at a late stage of groundwater evolution, the opposite of what was found at a coastal aquifer in Germany [5]

The new data helps to better constrain groundwater models of Nam Dinh area and confirmed that the salt is derived from multiple sources

References

[1] Wagner, F. et al., Assessment of Groundwater Resources in Nam Dinh Province - Final Technical Report, Part A, Bundesministerium für wirtschaftliche Zusammenarbeit und

[2] Wagner, F. et al., Genesis of economic relevant fresh groundwater resources in Pleistocene/ Neogene aquifers in Nam Dinh (Red River Delta, Vietnam). Geophysical Research Abstracts,

[3] Tanabe, S. et al., Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam Sedimentary Geology, 187, 2006 [4] Loosli, H. et al., Rare Gases. In Isotopes in the Water Cycle: Past, Present and Future of a

[5] Sültenfuss, J.et al., Age structure and recharge conditions of a coastal aquifer (northern Germany) investigated with ³⁹Ar, ¹⁴C, ³H, He isotopes and Ne Hydrogeology Journal, 19, 2011 [6] Aeschbach-Hertig, W. et al., Modeling excess air and degassing in groundwater by

equilibrium partitioning with a gas phase. Water Resour. Res., AGU, 2008

