SOLVENCY II:

How Geosciences become crucial for the Insurance Business.

Juergen Grieser

Manager, Model Development

INSURANCE IS SOCIAL

Insurance mitigates Risk

If your house burns down due to lightning the community pays.

Insurance reduces Risk

If you want building a house in a flood plane you won't find an insurer.

INSURANCE IS SOCIAL

Why do they build buildings like this?

- a) To impress.
- b) To demonstrate that they have enough money to pay in case your house burns down.

HOW MUCH CASH SHOULD INSURANCE HAVE?

Sum of premiums $P \ge$ average Losses LPlus some extra money S for 'bad' years.

The Ruin problem:

$$S_{t+1} = S_t + P_{\Delta t} - L_{\Delta t}$$

$$S_{t+1}$$
 = Solvency at the end of a year S_t = Solvency at beginning of a year $P_{\Delta t}$ = Premiums during the year

$$L_{\Delta t}$$
 = Losses during the year

HOW TO AVOID BANKRUPTCY?

$$S_t > L - P$$

Total annual loss L

- is a random variable,
- is insurer specific
 since it depends on the portfolio
 - what is insured
 - where
 - against what

SOLVENCY II OF THE EU

Solvency Capital Requirement SCR

EU wants all insurers who write contracts in Europe to stay solvent even in case of a one-in-two-hundred year annual loss.

Why?

- To reduce the risk that an insurer would be unable to meet claims;
- To reduce the losses suffered by policyholders in the event that a firm is unable to meet all claims fully;
- To provide early warning to supervisors so that they can intervene promptly if capital falls below the required level; and
- To promote confidence in the financial stability of the insurance sector.

But how save is this?

SOLVENCY II

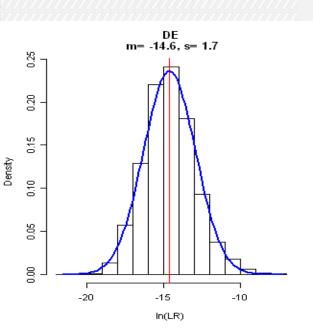
Encounter probability

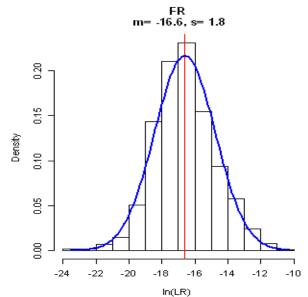
Probability that an event with return period τ happens to occur within N years.

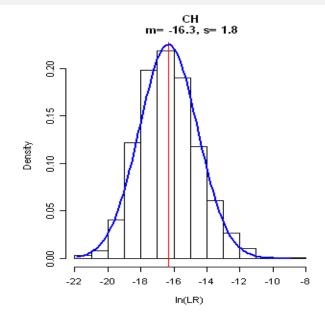
$$P_N(\tau) = 1 - \left(1 - \frac{1}{\tau}\right)^N$$

$$P_{40}(\tau = 200) \approx 18\%$$

And how to estimate the 200-yr loss?

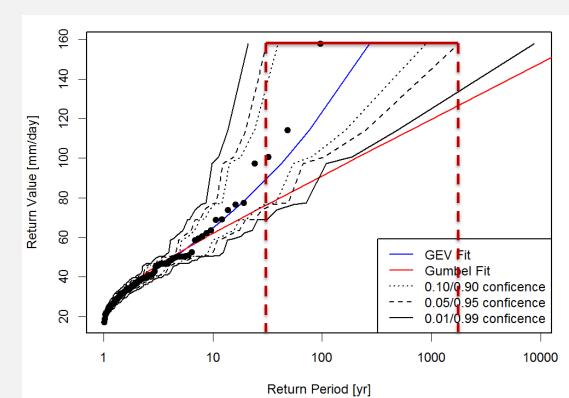

THE CLASSICAL ACTUARIAL APPROACH


Example:


Distribution of claims due to convective events (hail and wind).

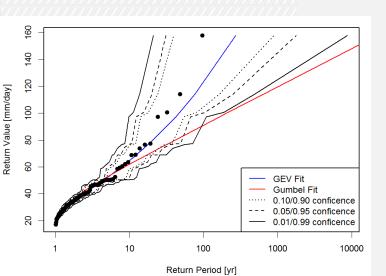
→ Estimate return periods of high losses.

Problem: Extrapolation from short observations periods.



IS STATISTICAL EXTRAPOLATION ANY GOOD?

→ Pure statistical approach is very uncertain.


- A simple example:

 What is the return period of the rain event causing the Elbe 2002 flood?
- Look at the observed daily rain in Dresden from 1917 to 2011.
- And do extreme value statistics.

CAN WE DO BETTER?

Yes, the really extreme rain is linked to certain weather conditions.

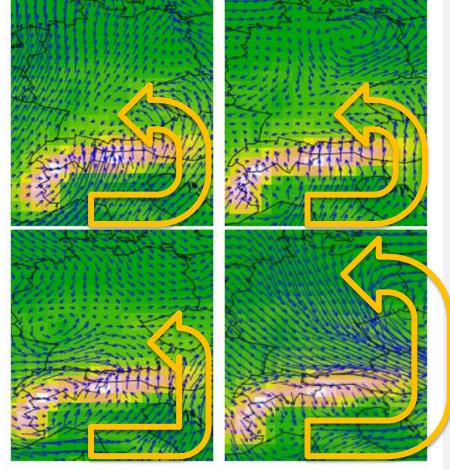


Figure 7.1: 850hPa reanalysis wind field from CFSR for 12 noon of the 18^{th} July 1987 (upper left image), the 2^{nd} August 1998 (upper right image), the 6^{th} July 1999 (lower left image), and the 8^{th} August 2002 (lower right image).

HOW TO AVOID BANKRUPTCY?

$S_t > L - P$

The Standard Formula of Solvency II:

Mean loss = premiums.

Deviation from mean loss is Gaussian $\rightarrow L = \mu_L + k \sigma_L$

Individual losses are correlated $\rightarrow \rho_{ii} > 0$

The annual ruin probability should be $p_b = 1/200$.

$$S_t > L - P$$

HOW TO AVOID BANKRUPTCY?

The Standard Formula of Solvency II:

$$SCR = \bar{\lambda} \sqrt{\sum_{i,j} \rho_{i,j} \frac{\lambda_i}{\bar{\lambda}} TIV_i \frac{\lambda_i}{\bar{\lambda}} TIV_j}$$

$$SCR$$
 = Solvency at beginning of a year = Solvency Capital Requirement

$$\rho_{ij}$$
 = Correlation between different regions/perils = Aggregation Matrix

$$TIV_i$$
 = Total insured value in region i


$$\bar{\lambda}$$
 = Expected aggregated mean loss ratio = Market Factor

$$\frac{\lambda_i}{\lambda}$$
 = Local to aggregated loss ratio = Relativity Factor

RELATIVITY **FACTORS**

Local Loss Ratio to Countrywide Loss Ratio

According to this observation one CRESTA cell determines the majority of the loss. →Don't trust observed loss statistics.

SO WHAT?

Insurers have the choice


- a) Use the standard formula
- b) Use an in-house model → developed by geoscientists
- c) Use a vendor model \rightarrow developed by geoscientists.

Summary:

The EU forces insurers to estimate their risk. Insurers need the work of geoscientists.

→ There is a lot of work waiting to be done by geoscientists.

Thanks for your attention

