

Variation in the reliability of ensemble SST predictions from seasonal to decadal timescales

Chun Kit Ho, Ed Hawkins, Len Shaffrey, Jochen Bröcker NCAS-Climate, University of Reading, UK

Leon Hermanson, James Murphy, Doug Smith UK Met Office, Exeter, UK

e.hawkins@reading.ac.uk

Submitted to GRL

•

Can seasonal to decadal prediction systems support production of reliable **probabilistic** forecasts?

Fig. 8.1 from Weigel (2012)

National Centre for

Atmospheric

Reliability and dispersion

Reliability: forecast probabilities should match observed relative frequency

Corti et al. 2012

Weisheimer et al. 2011

necessary for reliability

should be the same as RMSE –

Parallel DePreSys ensemble experiments

National Centre for Atmospheric Science

- We consider the **spread-error ratio** for different lead times:
 - Ratio > 1: **overdispersion** (underconfident)
 - Ratio < 1: **underdispersion** (overconfident)

m = number of ensemble members

 $m+1 \sigma_e(\tau)$

m

 $RMSE(\tau)$

ENSEMBLE DESIGN – 3 parallel ensembles with HadCM3:DePreSys ICEDePreSys PPENoAssim PPE

- All have 46 hindcasts (1960-2005), 9 ensemble members
- Both DePreSys ensembles are anomaly initialised from obs.
- Initial condition ensemble (ICE) uses standard HadCM3
- Perturbed Physics Ensembles (PPE) use 9 spun-up versions of HadCM3 with perturbations to 29 atmospheric parameters
- This analysis compares hindcast SSTs with HadISST

DePreSys ICE

DePreSys PPE

- Underdispersion consistent with many other seasonal prediction systems
- Perturbed physics ensemble has improved reliability

3

DePreSys ICE

DePreSys PPE

Dispersion increases when considering year 1

0.33 0.5 0.57 0.67 0.77 0.83 0.91 1 1.1 1.2 1.3 1.5 1.75 2 underdispersion Overdispersion

Spread-error ratio – first three years

3

Spread-error ratio – first nine years

BY

• For a reliable system, observations & ensemble forecasts need to have same climatological variance

 For a reliable system, observations & ensemble forecasts need to have same climatological variance

Ratio of model to observed variability

Year 9 dispersion in NoAssim PPE

0.33 0.5 0.57 0.67 0.77 0.83 0.91 1 1.1 1.2 1.3 1.5 1.75 2 3

Summary

Year 9

lead time

overdispersion

underdispersion

Factors affecting dispersion in DePreSys SST forecasts Forecast Seasonal Decadal

Season 1 Year 1 Year 3

Excessive model internal variability

Model initialisation reduces spread

Parameter perturbations produce larger spread than initial condition perturbations

Spatial variation of reliability

- North Atlantic most overdispersed
- Underdispersion in Tropical Pacific for all lead times

Implications

- Ensemble prediction system design
 - Climate model variability is at least as important as any perturbation scheme
 - Simulated variability should be assessed in forecast system design
 - Both skill and reliability should be assessed when analysing hindcasts
 - Dispersion estimates are robust to considering fewer start dates (not shown)

"...the condition of confidence or otherwise forms a very important part of the prediction..." - Ernest Cooke, 1906

