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Numerical Model Model Validation

Model Application

* Very fine resolution (better than 1 km) is needed to resolve dynamic features MISMIP3D — AMR Grounding line Resolution Requirements
like grounding lines and ice streams -- computationally prohibitive for uniform- N 8 o ; . » Application to Ice2Sea experiments
resolution studies of large ice sheets like Antarctica. I :%E tie | ‘1 (Stephen Cornford’s talk tomorrow).
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* BISICLES is built upon the LBNL-developed Chombo AMR C++/Fortran ~ L 5INg ,( . P 8) . S M0 -0 s
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framework, which supports scalable block-structured AMR applications. / Plot at left shows grounding-line regime : |z m |,
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* BISICLES uses modified version of the Schoof-Hindmarsh (2010) model -- “SSA*” HEEEE / P . L 5 G B
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resulting in a simplified 2D nonlinear elliptic system for ice velocity at the bed. . o~ 0195 Kk o 0.0877kom
* Differ from standar.d L1.L2 method by ignoring vertica.I sh.ear when recons.tructing. flux velocities — i e Ly e Need very fine (200 m) resolution
reasonable approximation in fast-moving regions which improves numerical stability (SSA*). e | -
: // / to get full reversibility.

Ice Velocity Solvers

* Even with reduction to 2D, momentum balance equation results in a coupled
nonlinear elliptic system to be solved for the ice velocity.
* Current approach: JENK outer nonlinear solver

Ongoing Improvements

MISMIP3D — SSA* vs. SSA and Full-Stokes Embedded Boundary (EBChombo)
* Currently force GL and ice margins to cell faces

W|th Chombo nat|Ve geometnc MUIt|gr|d - . o SSA, Ax"=100m o SSA™, Ax"=100m ° ”Stair-step” discretization
(GMG) inner linear solver. h * Plots at right shows MISMIP3D  Known to be inadequate from experience
shite initialio : results for SSA and our SSA*. : .
Sea Embayment (ASE) computation r \ . v * 100 m resolution — fully resolved g = - § o0
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+ First plot: initial uniform 4 km mesh solve. )  Mid-stream, rturming improve discretization of GL's and ice margins:
. Elmer Full-Stokes results agree ~— boundary,perturbed . .
» Second plot: add refinement level (2 km) — gmmons _ . 04 510 | T bounderyretuming * Use cut-cell approach to discretize around
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GLs and ice margins.
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* Third plot: add second refinement level (1 km), etc
* Lower plot at right: solver convergence for P

uniform-mesh 5 km full-continent Antarctica.

* Chombo GMG can stall for some realistic problems,
especially as resolution increases. (black lines at right).

* PETSc Algebraic Multigrid (AMG) performs much Norm(residual) vs. solver iteration for 5 km
better (purple lines at right). Antarctica test case. Black — Chombo GMG,

purple — PETSc GAMG.

ual L2-norm

 Can solve as a Stefan Problem, with I
appropriate jump conditions enforced at
grounding line (as in Schoof, 2007)

Conclusion — need better than SSA for grounding lines,
but SSA* seems sufficient (at least in this case).
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