Resolving Grounding Line Dynamics with the BISICLES Adaptive Ice Sheet Model

D.F. Martin (DFMartin@lbl.gov)¹, S.L. Cornford², P.O. Schwartz¹, A.M. Le Brocq³, A.J. Payne², W.L. Lipscomb⁴, E.G. Ng¹

1. Lawrence Berkeley National Laboratory, Berkeley, CA, USA 2. University of Bristol, UK 3. University of Exeter, Exeter, UK 4. Los Alamos National Laboratory, Los Alamos, NM, USA

Numerical Model

- Very fine resolution (better than 1 km) is needed to resolve dynamic features like grounding lines and ice streams -- computationally prohibitive for uniform-resolution studies of large ice sheets like Antarctica.
- Large regions where finest resolution is unnecessary
 ideal application for adaptive mesh refinement (AMR).
- Block-structured AMR:
- Refine in logically-rectangular patches.
- Amortize cost of irregular operations over large number of regular structured-mesh operations.
- Finite-volume discretizations simplify coarse-fine coupling.
- Simplifies dynamic regridding to follow changing features.
- BISICLES is built upon the LBNL-developed Chombo AMR C++/Fortran framework, which supports scalable block-structured AMR applications.
- BISICLES uses modified version of the Schoof-Hindmarsh (2010) model -- "SSA*"
- Following Schoof and Hindmarsh, using SIA-like relation to compute stress allows vertical integration resulting in a simplified 2D nonlinear elliptic system for ice velocity at the bed.
- Differ from standard L1L2 method by ignoring vertical shear when reconstructing flux velocities reasonable approximation in fast-moving regions which improves numerical stability (SSA*).

Ice Velocity Solvers

- Even with reduction to 2D, momentum balance equation results in a coupled nonlinear elliptic system to be solved for the ice velocity.
- Current approach: JFNK outer nonlinear solver with Chombo native geometric Multigrid (GMG) inner linear solver.
- Upper plot at right: initializing an Amundsen
 Sea Embayment (ASE) computation
 - Thick line: outer nonlinear solver residual
 - Thin lines: inner linear solver residual
 - First plot: initial uniform 4 km mesh solve.
 - Second plot: add refinement level (2 km) where needed and re-solve for velocity
 - Third plot: add second refinement level (1 km), etc
- Lower plot at right: solver convergence for uniform-mesh 5 km full-continent Antarctica.
- Chombo GMG can stall for some realistic problems, especially as resolution increases. (black lines at right).
- PETSc Algebraic Multigrid (AMG) performs much better (purple lines at right).

Antarctica test case. Black – Chombo GMG,

purple – PETSc GAMG.

Sample AMR meshes – black mesh is base

level (0), blue mesh (level 1) is a factor of 2

finer, while red (level 2) is 4 times finer still

Model Validation

MISMIP3D – AMR Grounding line Resolution Requirements

Plots of MISMIP3D solution using AMR – coarsest mesh is 6.5 km, with 5 levels of refinement resulting in 195 m resolution on the finest level. Boxes show refined regions. Coloring depicts velocity solution, solid black line denotes grounding line position. Note reversibility from start->finish..

- Plot at left shows grounding-line position for centerline and edge boundary for increasing finest spatial resolution.
- Need very fine (200 m) resolution to get full reversibility.

MISMIP3D - SSA* vs. SSA and Full-Stokes

- Plots at right shows MISMIP3D results for SSA and our SSA*.
- 100 m resolution fully resolved 虞 620
- Note initial (steady state) GL positions – difference of 75 km!
- Elmer Full-Stokes results agree with SSA*.

Conclusion – need better than SSA for grounding lines, but SSA* seems sufficient (at least in this case).

Model Application

- Application to Ice2Sea experiments (Stephen Cornford's talk tomorrow).
- 200-year simulations of RIS/FRIS, Amundsen Sea Embayment (ASE)
- Plot at right shows contribution to SLR for different resolutions
- Need 1 km resolution to get "converged" result.
- Finer than 1 km, appears to be converging at O(mesh spacing) – implies that we're in the asymptotic regime....

Inset showing typical AMR meshes around Pine Island Glacier

Contribution to SLR vs. time (years)

Contribution to SLR vs. time for varying resolutions.

Ongoing Improvements

Embedded Boundary (EBChombo)

- Currently force GL and ice margins to cell faces
- "Stair-step" discretization
- Known to be inadequate from experience with Stefan Problem in other contexts

- Use cut-cell approach to discretize around GLs and ice margins.
- Can solve as a Stefan Problem, with appropriate jump conditions enforced at grounding line (as in Schoof, 2007)

